Suppr超能文献

磁共振成像(MRI)有助于鉴别具有肉瘤样分化的肾细胞癌与无肉瘤样分化的肾细胞癌。

Magnetic resonance imaging (MRI) helps differentiate renal cell carcinoma with sarcomatoid differentiation from renal cell carcinoma without sarcomatoid differentiation.

作者信息

Takeuchi Mitsuru, Froemming Adam T, Kawashima Akira, Thapa Prabin, Carter Rickey E, Cheville John C, Thompson R Houston, Takahashi Naoki

机构信息

Radiolonet Tokai, 86-2, 3-chome, Asaoka-cho, Chikusa-ku, Nagoya, Aichi, 464-0811, Japan.

Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.

出版信息

Abdom Radiol (NY). 2022 Jun;47(6):2168-2177. doi: 10.1007/s00261-022-03501-9. Epub 2022 Apr 5.

Abstract

PURPOSE

The aim of the present study is to identify predictive imaging findings and construct a diagnostic model for differentiating renal cell carcinoma (RCC) with and without sarcomatoid dedifferentiation (sRCC and non-sRCC).

METHODS

This study is a single-center retrospective study. All patients had magnetic resonance imaging (MRI) with gradient-echo T1-weighted images, single-shot T2-weighted images (T2WI), and enhanced nephrographic phase images. Forty pathologically confirmed sRCCs and 80 non-sRCCs were included in this study. Control cases were selected by matching the tumor diameter and the year of MRI. Two radiologists independently evaluated the following findings: growth pattern, presence of low-intensity area on T2WI in the tumor (T2LIA), presence of non-enhancing area, local tumor stage, and presence of regional lymphadenopathy. Two radiologists measured the diameter of the tumor, T2LIA, and the non-enhancing area. Multivariable logistic regression analysis was used to identify independent predictive factors for differentiating sRCC from non-sRCC. Selected variables were entered in the logistic regression model, and the area under the curve (AUC) was calculated for each reader with 95% confidence intervals (CIs).

RESULTS

Larger T2LIA-to-tumor diameter ratio, regional lymphadenopathy, and local tumor stage 4 were associated with sRCC, and selected for the subsequent construction of a logistic regression model. With this model, the AUCs were 0.76 (95% CI, 0.66-0.85) and 0.70 (95% CI, 0.59-0.81) for prediction of sRCC.

CONCLUSION

In conclusion, larger T2LIA-to-tumor diameter ratio, regional lymphadenopathy, and local tumor stage 4 are predictive findings of sRCC. As a result, the model constructed using these findings demonstrated a moderate degree of diagnostic accuracy.

摘要

目的

本研究旨在识别预测性影像学表现,并构建一个用于鉴别伴有和不伴有肉瘤样去分化的肾细胞癌(sRCC和非sRCC)的诊断模型。

方法

本研究为单中心回顾性研究。所有患者均接受了磁共振成像(MRI)检查,包括梯度回波T1加权像、单次激发T2加权像(T2WI)和肾实质增强期图像。本研究纳入了40例经病理证实的sRCC和80例非sRCC。通过匹配肿瘤直径和MRI年份选择对照病例。两名放射科医生独立评估以下表现:生长方式、肿瘤T2WI上低信号区(T2LIA)的存在、无强化区的存在、局部肿瘤分期和区域淋巴结肿大。两名放射科医生测量肿瘤直径、T2LIA和无强化区。采用多变量逻辑回归分析来识别区分sRCC和非sRCC的独立预测因素。将选定变量纳入逻辑回归模型,并为每位读者计算曲线下面积(AUC)及95%置信区间(CI)。

结果

较大的T2LIA与肿瘤直径比值、区域淋巴结肿大和局部肿瘤分期4与sRCC相关,并被选用于后续逻辑回归模型的构建。利用该模型预测sRCC时,AUC分别为0.76(95%CI,0.66 - 0.85)和0.70(95%CI,0.59 - 0.81)。

结论

总之,较大的T2LIA与肿瘤直径比值、区域淋巴结肿大和局部肿瘤分期4是sRCC的预测性表现。因此,利用这些表现构建的模型显示出中等程度的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验