Suppr超能文献

MR 纹理分析在肾细胞癌组织学分型和分级中的作用:初步研究。

Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study.

机构信息

Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.

Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.

出版信息

Abdom Radiol (NY). 2019 Oct;44(10):3336-3349. doi: 10.1007/s00261-019-02122-z.

Abstract

PURPOSE

The study evaluated the usefulness of magnetic resonance imaging (MRI) texture parameters in differentiating clear cell renal carcinoma (CC-RCC) from non-clear cell carcinoma (NC-RCC) and in the histological grading of CC-RCC.

MATERIALS AND METHODS

After institutional ethical approval, this retrospective study analyzed 33 patients with 34 RCC masses (29 CC-RCC and five NC-RCC; 19 low-grade and 10 high-grade CC-RCC), who underwent MRI between January 2011 and December 2012 on a 1.5-T scanner (Avanto, Siemens, Erlangen, Germany). The MRI protocol included T2-weighted imaging (T2WI), diffusion-weighted imaging [DWI; at b 0, 500 and 1000 s/mm with apparent diffusion coefficient (ADC) maps] and T1-weighted pre and postcontrast [corticomedullary (CM) and nephrographic (NG) phase] acquisition. MR texture analysis (MRTA) was performed using the TexRAD research software (Feedback Medical Ltd., Cambridge, UK) by a single reader who placed free-hand polygonal region of interest (ROI) on the slice showing the maximum viable tumor. Filtration histogram-based texture analysis was used to generate six first-order statistical parameters [mean intensity, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness and kurtosis] at five spatial scaling factors (SSF) as well as on the unfiltered image. Mann-Whitney test was used to compare the texture parameters of CC-RCC versus NC-RCC, and high-grade versus low-grade CC-RCC. P value < 0.05 was considered significant. A 3-step feature selection was used to obtain the best texture metrics for each MRI sequence and included the receiver-operating characteristic (ROC) curve analysis and Pearson's correlation test.

RESULTS

The best performing texture parameters in differentiating CC-RCC from NC-RCC for each sequence included (area under the curve in parentheses): entropy at SSF 4 (0.807) on T2WI, SD at SSF 4 (0.814) on DWI b500, SD at SSF 6 (0.879) on DWI b1000, mean at SSF 0 (0.848) on ADC, skewness at SSF 2 (0.854) on T1WI and skewness at SSF 3 (0.908) on CM phase. In differentiating high from low-grade CC-RCC, the best parameters were: entropy at SSF 6 (0.823) on DWI b1000, mean at SSF 3 (0.889) on CM phase and MPP at SSF 5 (0.870) on NG phase.

CONCLUSION

Several MR texture parameters showed excellent diagnostic performance (AUC > 0.8) in differentiating CC-RCC from NC-RCC, and high-grade from low-grade CC-RCC. MRTA could serve as a useful non-invasive tool for this purpose.

摘要

目的

本研究评估磁共振成像(MRI)纹理参数在鉴别透明细胞肾细胞癌(CC-RCC)与非透明细胞癌(NC-RCC)以及在 CC-RCC 组织学分级中的作用。

材料与方法

本回顾性研究经机构伦理委员会批准,纳入 2011 年 1 月至 2012 年 12 月期间在 1.5-T 扫描仪(西门子公司,德国埃朗根)上接受 MRI 检查的 33 例 34 个 RCC 肿块患者(29 例 CC-RCC 和 5 例 NC-RCC;19 例低级别,10 例高级别 CC-RCC)。MRI 方案包括 T2 加权成像(T2WI)、扩散加权成像[DWI;b 值分别为 0、500 和 1000 s/mm,以及表观扩散系数(ADC)图]和 T1 加权对比前(皮质-髓质(CM)期和肾实质(NG)期)和后采集。MR 纹理分析(MRTA)使用 TexRAD 研究软件(Feedback Medical Ltd.,英国剑桥)由一位读者进行,他在显示最大存活肿瘤的切片上手动绘制多边形 ROI。基于滤波直方图的纹理分析用于在五个空间缩放因子(SSF)上生成六个一阶统计参数[平均强度、标准差(SD)、阳性像素的平均值(MPP)、熵、偏度和峰度]以及未滤波图像上。使用 Mann-Whitney 检验比较 CC-RCC 与 NC-RCC、高级别与低级别 CC-RCC 的纹理参数。P 值<0.05 被认为具有统计学意义。使用三步特征选择方法为每个 MRI 序列获得最佳纹理指标,包括受试者工作特征(ROC)曲线分析和 Pearson 相关性检验。

结果

每个序列中用于区分 CC-RCC 与 NC-RCC 的最佳纹理参数包括(括号内为曲线下面积):T2WI 上 SSF 4 的熵(0.807),DWI b500 上 SSF 4 的 SD(0.814),DWI b1000 上 SSF 6 的 SD(0.879),ADC 上 SSF 0 的平均强度(0.848),T1WI 上 SSF 2 的偏度(0.854)和 CM 相位上 SSF 3 的偏度(0.908)。在区分高级别与低级别 CC-RCC 中,最佳参数为:DWI b1000 上 SSF 6 的熵(0.823),CM 相位上 SSF 3 的平均强度(0.889)和 NG 相位上 SSF 5 的 MPP(0.870)。

结论

几种 MR 纹理参数在鉴别 CC-RCC 与 NC-RCC 以及高级别与低级别 CC-RCC 方面表现出优异的诊断性能(AUC>0.8)。MRTA 可作为一种有用的非侵入性工具用于此目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验