Suppr超能文献

相似文献

1
Predicting the binding of small molecules to nuclear receptors using machine learning.
Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac114.
2
EDC-Predictor: A Novel Strategy for Prediction of Endocrine-Disrupting Chemicals by Integrating Pharmacological and Toxicological Profiles.
Environ Sci Technol. 2023 Nov 21;57(46):18013-18025. doi: 10.1021/acs.est.2c08558. Epub 2023 Apr 13.
4
Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors.
Environ Sci Technol. 2024 Mar 12;58(10):4487-4499. doi: 10.1021/acs.est.3c05974. Epub 2024 Feb 29.
5
CatNet: Sequence-based deep learning with cross-attention mechanism for identifying endocrine-disrupting chemicals.
J Hazard Mater. 2024 Mar 5;465:133055. doi: 10.1016/j.jhazmat.2023.133055. Epub 2023 Nov 22.
6
Structures of Endocrine-Disrupting Chemicals Correlate with the Activation of 12 Classic Nuclear Receptors.
Environ Sci Technol. 2021 Dec 21;55(24):16552-16562. doi: 10.1021/acs.est.1c04997. Epub 2021 Dec 3.
7
Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
Ecotoxicol Environ Saf. 2014 Dec;110:280-7. doi: 10.1016/j.ecoenv.2014.08.026. Epub 2014 Oct 3.
8
A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors.
Sci Total Environ. 2017 Jan 15;576:609-616. doi: 10.1016/j.scitotenv.2016.10.093. Epub 2016 Oct 27.
10
NURA: A curated dataset of nuclear receptor modulators.
Toxicol Appl Pharmacol. 2020 Nov 15;407:115244. doi: 10.1016/j.taap.2020.115244. Epub 2020 Sep 19.

引用本文的文献

4
The key characteristics concept.
Curr Opin Toxicol. 2025 Mar;41. doi: 10.1016/j.cotox.2024.100515.
5
Mapping assays to the key characteristics of carcinogens to support decision-making.
Database (Oxford). 2025 Apr 22;2025. doi: 10.1093/database/baaf026.
6
PbsNRs: predict the potential binders and scaffolds for nuclear receptors.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae710.
9
Characterization of flavonoids with potent and subtype-selective actions on estrogen receptors alpha and beta.
iScience. 2024 Feb 20;27(3):109275. doi: 10.1016/j.isci.2024.109275. eCollection 2024 Mar 15.
10
Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors.
Environ Sci Technol. 2024 Mar 12;58(10):4487-4499. doi: 10.1021/acs.est.3c05974. Epub 2024 Feb 29.

本文引用的文献

1
Binary and multi-class classification for androgen receptor agonists, antagonists and binders.
Chemosphere. 2021 Jan;262:128313. doi: 10.1016/j.chemosphere.2020.128313. Epub 2020 Sep 11.
2
NURA: A curated dataset of nuclear receptor modulators.
Toxicol Appl Pharmacol. 2020 Nov 15;407:115244. doi: 10.1016/j.taap.2020.115244. Epub 2020 Sep 19.
5
The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them.
Cancer Epidemiol Biomarkers Prev. 2020 Oct;29(10):1887-1903. doi: 10.1158/1055-9965.EPI-19-1346. Epub 2020 Mar 9.
6
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
7
Applicability Domains Enhance Application of PPARγ Agonist Classifiers Trained by Drug-like Compounds to Environmental Chemicals.
Chem Res Toxicol. 2020 Jun 15;33(6):1382-1388. doi: 10.1021/acs.chemrestox.9b00498. Epub 2020 Feb 17.
8
Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories.
Environ Sci Technol. 2020 Mar 3;54(5):2575-2584. doi: 10.1021/acs.est.9b06379. Epub 2020 Feb 14.
10
Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor.
J Phys Chem B. 2019 Sep 12;123(36):7657-7666. doi: 10.1021/acs.jpcb.9b05654. Epub 2019 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验