Suppr超能文献

结合图神经网络和变换器进行少样本核受体结合活性预测。

Combining graph neural networks and transformers for few-shot nuclear receptor binding activity prediction.

作者信息

Torres Luis H M, Arrais Joel P, Ribeiro Bernardete

机构信息

Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal.

出版信息

J Cheminform. 2024 Sep 27;16(1):109. doi: 10.1186/s13321-024-00902-4.

Abstract

Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which compounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a single receptor at a time, which may limit their effectiveness. Hence, the transfer of learned knowledge among multiple NRs can improve the performance of molecular predictors and lead to the development of more effective drugs. In this research, we integrate graph neural networks (GNNs) and Transformers to introduce a few-shot GNN-Transformer, Meta-GTNRP to predict the binding activity of compounds using the combined information of different NRs and identify potential NR-modulators with limited data. The Meta-GTNRP model captures the local information in graph-structured data and preserves the global-semantic structure of molecular graph embeddings for NR-binding activity prediction. Furthermore, a few-shot meta-learning approach is proposed to optimize model parameters for different NR-binding tasks and leverage the complementarity among multiple NR-specific tasks to predict binding activity of compounds for each NR with just a few labeled molecules. Experiments with a compound database containing annotations on the binding activity for 11 NRs shows that Meta-GTNRP outperforms other graph-based approaches. The data and code are available at: https://github.com/ltorres97/Meta-GTNRP .Scientific contributionThe proposed few-shot GNN-Transformer model, Meta-GTNRP captures the local structure of molecular graphs and preserves the global-semantic information of graph embeddings to predict the NR-binding activity of compounds with limited available data; A few-shot meta-learning framework adapts model parameters across NR-specific tasks for different NRs in a joint learning procedure to predict the binding activity of compounds for each NR with just a few labeled molecules in highly imbalanced data scenarios; Meta-GTNRP is a data-efficient approach that combines the strengths of GNNs and Transformers to predict the NR-binding properties of compounds through an optimized meta-learning procedure and deliver robust results valuable to identify potential NR-based drug candidates.

摘要

核受体(NRs)作为药物研发中的生物学靶点发挥着关键作用。然而,确定哪些化合物可作为内分泌干扰物并以减少的候选药物数量调节核受体的功能是一项具有挑战性的任务。此外,用于预测核受体结合活性的计算方法大多一次只关注单一受体,这可能会限制其有效性。因此,在多个核受体之间转移所学知识可以提高分子预测器的性能,并有助于开发更有效的药物。在本研究中,我们整合了图神经网络(GNNs)和Transformer架构,引入了少样本GNN-Transformer模型Meta-GTNRP,以利用不同核受体的组合信息预测化合物的结合活性,并在数据有限的情况下识别潜在的核受体调节剂。Meta-GTNRP模型捕捉图结构数据中的局部信息,并保留分子图嵌入的全局语义结构以进行核受体结合活性预测。此外,还提出了一种少样本元学习方法,用于针对不同的核受体结合任务优化模型参数,并利用多个特定于核受体的任务之间的互补性,仅通过少量标记分子预测每种核受体的化合物结合活性。对一个包含11种核受体结合活性注释的化合物数据库进行的实验表明,Meta-GTNRP优于其他基于图的方法。数据和代码可在以下网址获取:https://github.com/ltorres97/Meta-GTNRP

科学贡献

所提出的少样本GNN-Transformer模型Meta-GTNRP捕捉分子图的局部结构,并保留图嵌入的全局语义信息,以在可用数据有限的情况下预测化合物的核受体结合活性;一种少样本元学习框架在联合学习过程中针对不同的核受体跨特定于核受体的任务调整模型参数,以便在高度不平衡的数据场景中仅通过少量标记分子预测每种核受体的化合物结合活性;Meta-GTNRP是一种数据高效的方法,它结合了GNNs和Transformer架构的优势,通过优化的元学习过程预测化合物的核受体结合特性,并提供对识别潜在的基于核受体的药物候选物有价值的可靠结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17e1/11429188/c0d6ff2f4dd4/13321_2024_902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验