Mosallaei Hamta, Hadadzadeh Hassan, Foelske Annette, Sauer Markus, Amiri Rudbari Hadi, Blacque Olivier
Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Analytical Instrumentation Center, Technische Universität Wien, Lehargasse 6, 1060 Wien, Austria.
Dalton Trans. 2022 Apr 20;51(16):6314-6331. doi: 10.1039/d2dt00398h.
Water electrolysis is one of the most capable processes for supplying clean fuel. Herein, two novel ionic Ru(II)-Fe(II) complexes, [Ru(tmphen)][Fe(CN)] and [Ru(phen)][Fe(CN)(NO)], where tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline and phen = 1,10-phenanthroline, were synthesized and characterized by UV-Vis spectroscopy, elemental analysis, FT-IR, and single-crystal X-ray structural analysis. By thermally decomposing the [Ru(tmphen)][Fe(CN)] complex at 600 °C for 4 h, a heterostructured RuO-FeO nanocomposite was fabricated through a facile one-pot treatment and then characterized by FT-IR, XRD, FT-Raman, UV-Vis (DRS), ICP-OES, FE-SEM, TEM, TGA/DTG, BET, and XPS analyses, which revealed the formation of highly crystalline RuO-FeO nanoparticles with an average size of 8-12 nm. The prepared nanocomposite was an efficient heterostructured electrocatalyst for performing water-splitting redox reaction processes, including hydrogen and oxygen evolution reactions (HER and OER) in alkaline solutions. In this regard, RuO and FeO samples were also prepared through thermal decomposition of Ru(tmphen) and K[Fe(CN)] precursors, respectively, as control experiments to compare their HER and OER electrocatalytic activity with that of the RuO-FeO nanocomposite. Specifically, the RuO-FeO nanocomposite exhibited significant electrocatalytic performance, generating 10 mA cm current density at -148 and 292 mV overpotentials, and the Tafel slope results from fitting the LSV curves to the Tafel equation were -43 and 56.08 mV dec for the HER and OER, respectively. Therefore, the heterostructured RuO-FeO nanocomposite can be viewed as a bi-functional electrocatalyst for HER and OER because it exploits the synergistic effects of heterostructures and active sites at its interface.
水电解是提供清洁燃料的最有效方法之一。在此,合成了两种新型离子型Ru(II)-Fe(II)配合物,[Ru(tmphen)][Fe(CN)]和[Ru(phen)][Fe(CN)(NO)],其中tmphen = 3,4,7,8-四甲基-1,10-菲咯啉,phen = 1,10-菲咯啉,并通过紫外-可见光谱、元素分析、傅里叶变换红外光谱和单晶X射线结构分析对其进行了表征。通过在600℃下将[Ru(tmphen)][Fe(CN)]配合物热分解4小时,通过简便的一锅法制备了一种异质结构的RuO-FeO纳米复合材料,然后通过傅里叶变换红外光谱、X射线衍射、傅里叶变换拉曼光谱、紫外-可见(漫反射光谱)、电感耦合等离子体发射光谱、场发射扫描电子显微镜、透射电子显微镜、热重/微商热重分析、比表面积分析和X射线光电子能谱分析对其进行了表征,结果表明形成了平均尺寸为8-12nm的高度结晶的RuO-FeO纳米颗粒。所制备的纳米复合材料是一种高效的异质结构电催化剂,可用于进行水分解氧化还原反应过程,包括在碱性溶液中的析氢反应和析氧反应(HER和OER)。在这方面,还分别通过Ru(tmphen)和K[Fe(CN)]前驱体的热分解制备了RuO和FeO样品,作为对照实验,以比较它们与RuO-FeO纳米复合材料的HER和OER电催化活性。具体而言,RuO-FeO纳米复合材料表现出显著的电催化性能,在-148和292mV过电位下产生10mA cm的电流密度,通过将线性扫描伏安曲线拟合到塔菲尔方程得到的塔菲尔斜率结果,HER和OER分别为-43和56.08mV dec。因此,异质结构的RuO-FeO纳米复合材料可被视为一种用于HER和OER的双功能电催化剂,因为它利用了异质结构及其界面处活性位点的协同效应。