Suppr超能文献

层状多孔石墨相氮化碳稳定的有效CoSnO反尖晶石作为用于全水分裂的双功能电催化剂。

Layered Porous Graphitic Carbon Nitride Stabilized Effective CoSnO Inverse Spinel as a Bifunctional Electrocatalyst for Overall Water Splitting.

作者信息

Sundararaj Sathiya Bama, Tamilarasan Saravanakumar, Thangavelu Selvaraju

机构信息

Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.

Department of Nanoscience and Technology, Anna University Regional campus, Coimbatore 641 046, India.

出版信息

Langmuir. 2022 Jun 28;38(25):7833-7845. doi: 10.1021/acs.langmuir.2c01095. Epub 2022 Jun 16.

Abstract

Developing an efficient, low-cost, and non-noble metal oxide-based nanohybrid material for overall water splitting is a highly desirable approach to promote clean energy harnessing and to minimize environmental issues. Accordingly, we proposed an interfacial engineering approach to construct layered porous graphitic carbon nitride (g-CN)-stabilized CoSnO inverse spinel nanohybrid materials as highly active bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. Here, a CoSnO/g-CN nanohybrid with a layered porous g-CN stabilized cubelike inverse spinel has been synthesized with an enhanced surface area via a simple one-pot hydrothermal method. Besides, detailed structural and morphological characterizations were carried out using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. Briefly, XPS analysis has revealed the existence of a strong coupling bond at the interface between a definite proportion of g-CN nanosheets and the inverse spinel, which act as an electron transport channel to explore the exceptional performances for HER and OER. Compared to the CoSnO inverse spinel lattice or g-CN nanosheets, the prepared CoSnO/g-CN nanohybrid-loaded 316 SSL mesh electrode showed excellent and stable electrocatalytic performances with very low overpotentials of 41 mV for HER and 260 mV for OER to reach the current density of 10 mA cm. To understand the electrocatalytic phenomena, the faradic efficiency was calculated for the prepared bifunctional electrocatalyst as 96%, which effectively would favor water electrolysis. Accordingly, the CoSnO/g-CN nanohybrid-loaded electrodes were constructed, and the minimum cell voltage was found to be 1.52 V to reach the current density of 10 mA cm, which is comparable to the standard RuO∥Pt/C in two-electrode systems. Thus, the developed nanohybrid-based electrocatalyst could be an alternative to noble metal-centered systems for highly efficient overall water splitting.

摘要

开发一种用于全水分解的高效、低成本且基于非贵金属氧化物的纳米杂化材料,是促进清洁能源利用和减少环境问题的一种非常理想的方法。因此,我们提出了一种界面工程方法,来构建层状多孔石墨相氮化碳(g-CN)稳定的CoSnO反尖晶石纳米杂化材料,作为在碱性介质中用于析氢反应(HER)和析氧反应(OER)的高活性双功能电催化剂。在此,通过简单的一锅水热法合成了具有层状多孔g-CN稳定立方状反尖晶石的CoSnO/g-CN纳米杂化物,其表面积有所增加。此外,还使用X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FE-SEM)、高分辨率透射电子显微镜(HR-TEM)、傅里叶变换红外光谱(FT-IR)和布鲁诺尔-埃米特-泰勒(BET)分析进行了详细的结构和形态表征。简而言之,XPS分析表明,在一定比例的g-CN纳米片与反尖晶石之间的界面处存在强耦合键,该键作为电子传输通道,使HER和OER具有优异的性能。与CoSnO反尖晶石晶格或g-CN纳米片相比,制备的负载CoSnO/g-CN纳米杂化物的316不锈钢网电极表现出优异且稳定的电催化性能,HER的过电位非常低,为41 mV,OER的过电位为260 mV,以达到10 mA cm的电流密度。为了理解电催化现象,计算出制备的双功能电催化剂的法拉第效率为96%,这有效地有利于水电解。因此,构建了负载CoSnO/g-CN纳米杂化物的电极,发现达到10 mA cm电流密度时的最小电池电压为1.52 V,这与双电极系统中的标准RuO∥Pt/C相当。因此,开发的基于纳米杂化物的电催化剂可以替代以贵金属为中心的系统,用于高效全水分解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验