State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China.
Mol Nutr Food Res. 2022 Jun;66(12):e2100826. doi: 10.1002/mnfr.202100826. Epub 2022 Apr 12.
Quercetin (QU) is one of the most abundant flavonoids in plants and has attracted the attention of researchers because of its remarkable antirheumatoid arthritis (RA) effects and extremely low adverse reactions. However, the underlying mechanism needs further study.
Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) reveal the obvious inhibitory effects of QU on Th17 cell differentiation in arthritic mice. More importantly, QU markedly limits the development of Th17 cell polarization, which is virtually compromised by the treatment with peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662 and knockdown of PPARγ. Additionally, molecular dynamics simulation and immunofluorescence exhibit QU directly binds to PPARγ and increases PPARγ nuclear translocation. Besides, QU confers its moderation effect on suppressor of cytokine signaling protein (SOCS3)/signal transducer and activator of transcription 3 (STAT3) axis partially depending on PPARγ. Furthermore, coimmunoprecipitation shows QU redistributes the corepressor silencing mediator for retinoid and thyroid-hormone receptors (SMRT) from PPARγ to STAT3. Finally, the inhibition of Th17 response and the antiarthritic effect of QU are nullified by GW9662 treatment in arthritic mice.
QU targets PPARγ and consequently inhibits Th17 cell differentiation by dual inhibitory activity of STAT3 to exert antiarthritic effect. The findings facilitate its development and put forth a stage for uncovering the mechanism of other naturally occurring compounds with chemical structures similar to QU.
槲皮素(QU)是植物中最丰富的类黄酮之一,由于其显著的抗类风湿关节炎(RA)作用和极低的不良反应,引起了研究人员的关注。然而,其潜在机制仍需要进一步研究。
流式细胞术、免疫荧光、酶联免疫吸附试验(ELISA)和实时定量聚合酶链反应(qRT-PCR)揭示了 QU 对关节炎小鼠 Th17 细胞分化的明显抑制作用。更重要的是,QU 显著限制了 Th17 细胞极化的发展,而过氧化物酶体增殖物激活受体γ(PPARγ)抑制剂 GW9662 和 PPARγ 敲低的治疗几乎使这种发展受到了损害。此外,分子动力学模拟和免疫荧光表明 QU 直接与 PPARγ 结合并增加其核易位。此外,QU 部分通过 PPARγ 对细胞因子信号转导抑制蛋白(SOCS3)/信号转导和转录激活因子 3(STAT3)轴发挥其调节作用。此外,共免疫沉淀表明 QU 将辅阻遏物沉默调节因子受体(SMRT)从 PPARγ 重新分配到 STAT3。最后,在关节炎小鼠中用 GW9662 处理可消除 QU 对 Th17 反应的抑制作用和抗关节炎作用。
QU 通过 STAT3 的双重抑制活性靶向 PPARγ,从而抑制 Th17 细胞分化,发挥抗关节炎作用。这些发现为其开发提供了便利,并为揭示其他具有与 QU 化学结构相似的天然化合物的机制奠定了基础。