Zhao Fuxing, Liu Hao, Li Hanxin, Cao Yixin, Hua Xuyu, Ge Shengzhuo, He Yu, Jiang Chongwen, He Dewen
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, China.
ACS Appl Mater Interfaces. 2022 Apr 20;14(15):17763-17773. doi: 10.1021/acsami.1c23647. Epub 2022 Apr 6.
This work presents the preparation and property characterization of a biomass gelatin (GA)-based aerogel. Halloysite nanotubes (HNTs) were used to improve the mechanical strength, pore size distribution, and thermal stability of the aerogel. Polyethyleneimine (PEI) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) were utilized to increase the interfacial interaction between HNTs and GA through chemical cross-linking. Green, sustainable, and low-cost composite aerogels were prepared by "cogel" and freeze-drying techniques. The experimental results show that the HNTs/GA composite aerogel has a low density (31.98-57.48 mg/cm), a high porosity (>95%), a low thermal conductivity (31.85-40.16 mW m K), and superior moldability. In addition, the mechanical strength and thermal insulation properties of the HNTs/GA composite aerogels with a "thorn"-like lamellar porous network structure are different in the axial direction versus the radial direction. The maximum compressive strength, maximum compressive modulus, and corresponding specific modulus in the axial direction were 1.81 MPa, 5.45 MPa, and 94.8 kN m kg, respectively. Therefore, the biomass/clay composite aerogel will be a sustainable and renewable functional material with high mechanical strength and thermal insulation properties, which is expected to further promote biomass and clay for high value utilization.
本文介绍了一种基于生物质明胶(GA)的气凝胶的制备及其性能表征。采用埃洛石纳米管(HNTs)来提高气凝胶的机械强度、孔径分布和热稳定性。利用聚乙烯亚胺(PEI)和(3-缩水甘油氧基丙基)三甲氧基硅烷(GPTMS)通过化学交联增加HNTs与GA之间的界面相互作用。通过“共凝胶”和冷冻干燥技术制备了绿色、可持续且低成本的复合气凝胶。实验结果表明,HNTs/GA复合气凝胶具有低密度(31.98 - 57.48 mg/cm)、高孔隙率(>95%)、低导热率(31.85 - 40.16 mW m K)以及优异的可模塑性。此外,具有“刺”状层状多孔网络结构的HNTs/GA复合气凝胶在轴向和径向上的机械强度和隔热性能有所不同。轴向的最大抗压强度、最大压缩模量和相应的比模量分别为1.81 MPa、5.45 MPa和94.8 kN m kg。因此,生物质/粘土复合气凝胶将是一种具有高机械强度和隔热性能的可持续且可再生的功能材料,有望进一步推动生物质和粘土的高值利用。