Zhang Lu, Huan Daoming, Zhu Kang, Dai Pengqi, Peng Ranran, Xia Changrong
Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China.
Energy Materials Center, Anhui Estone Materials Technology Co. Ltd, 2-A-1, No. 106, Chuangxin Avenue, Hefei, Anhui Province 230088, P. R. China.
ACS Appl Mater Interfaces. 2022 Apr 20;14(15):17358-17368. doi: 10.1021/acsami.2c01339. Epub 2022 Apr 6.
Developing high-performance cathodes with sufficient stability against CO rooting in ambient atmosphere is crucial to realizing the practical application of solid-oxide fuel cells. Herein, the Mn dopant is investigated to regulate the phase structure and cathode performance of SrFeO perovskites through partially replacing the B-site Fe. Compared with parent SrFeO, Mn-doped materials, SrFeMnO ( = 0.05 and 0.1), show stabilized cubic perovskites at room temperature. Meanwhile, doping Mn accelerates the oxygen reduction reaction process, showing a reduced polarization resistance of 0.155 Ω·cm at 700 °C for SrFeMnO, which is less than 30% of SrFeO. In addition, the Mn dopant improves the chemical oxygen surface exchange and bulk diffusion coefficients. Furthermore, Mn enhances the tolerance toward CO corrosion in various CO atmospheres. Density functional theory calculations also reveal that Mn can strengthen the structural stability and increase the activity for the oxygen reduction reaction.
开发在环境气氛中对CO具有足够稳定性的高性能阴极对于实现固体氧化物燃料电池的实际应用至关重要。在此,通过部分取代B位的Fe来研究Mn掺杂剂对SrFeO钙钛矿的相结构和阴极性能的调节作用。与母体SrFeO相比,Mn掺杂材料SrFeMnO( = 0.05和0.1)在室温下呈现出稳定的立方钙钛矿结构。同时,掺杂Mn加速了氧还原反应过程,SrFeMnO在700℃时的极化电阻降低至0.155Ω·cm,小于SrFeO的30%。此外,Mn掺杂剂提高了化学氧表面交换和体扩散系数。此外,Mn增强了在各种CO气氛中对CO腐蚀的耐受性。密度泛函理论计算还表明,Mn可以增强结构稳定性并提高氧还原反应的活性。