Suppr超能文献

通过受扰和对抗性的梦境学习皮质表示。

Learning cortical representations through perturbed and adversarial dreaming.

机构信息

Department of Physiology, University of Bern, Bern, Switzerland.

Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany.

出版信息

Elife. 2022 Apr 6;11:e76384. doi: 10.7554/eLife.76384.

Abstract

Humans and other animals learn to extract general concepts from sensory experience without extensive teaching. This ability is thought to be facilitated by offline states like sleep where previous experiences are systemically replayed. However, the characteristic creative nature of dreams suggests that learning semantic representations may go beyond merely replaying previous experiences. We support this hypothesis by implementing a cortical architecture inspired by generative adversarial networks (GANs). Learning in our model is organized across three different global brain states mimicking wakefulness, non-rapid eye movement (NREM), and REM sleep, optimizing different, but complementary, objective functions. We train the model on standard datasets of natural images and evaluate the quality of the learned representations. Our results suggest that generating new, virtual sensory inputs via adversarial dreaming during REM sleep is essential for extracting semantic concepts, while replaying episodic memories via perturbed dreaming during NREM sleep improves the robustness of latent representations. The model provides a new computational perspective on sleep states, memory replay, and dreams, and suggests a cortical implementation of GANs.

摘要

人类和其他动物无需大量教学就能从感官经验中提取一般概念。人们认为,离线状态(如睡眠)有助于实现这种能力,在此状态下,先前的经验会被系统地重放。然而,梦境的独特创造性表明,学习语义表示可能不仅仅是重放以前的经验。我们通过实现一种受生成对抗网络(GAN)启发的皮质架构来支持这一假设。我们的模型学习组织在三个不同的全局大脑状态中,模拟清醒、非快速眼动(NREM)和快速眼动(REM)睡眠,优化不同但互补的目标函数。我们在自然图像的标准数据集上训练模型,并评估学习表示的质量。我们的结果表明,通过 REM 睡眠期间的对抗性梦境生成新的虚拟感官输入对于提取语义概念至关重要,而通过 NREM 睡眠期间的受扰梦境重放 episodic 记忆则可以提高潜在表示的鲁棒性。该模型为睡眠状态、记忆重放和梦境提供了一个新的计算视角,并为 GANs 的皮质实现提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/726c/9071267/3ad83e3d4ac4/elife-76384-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验