Suppr超能文献

过度拟合的大脑:梦的进化是为了辅助泛化。

The overfitted brain: Dreams evolved to assist generalization.

作者信息

Hoel Erik

机构信息

Allen Discovery Center, Tufts University, Medford, MA, USA.

出版信息

Patterns (N Y). 2021 May 14;2(5):100244. doi: 10.1016/j.patter.2021.100244.

Abstract

Understanding of the evolved biological function of sleep has advanced considerably in the past decade. However, no equivalent understanding of dreams has emerged. Contemporary neuroscientific theories often view dreams as epiphenomena, and many of the proposals for their biological function are contradicted by the phenomenology of dreams themselves. Now, the recent advent of deep neural networks (DNNs) has finally provided the novel conceptual framework within which to understand the evolved function of dreams. Notably, all DNNs face the issue of overfitting as they learn, which is when performance on one dataset increases but the network's performance fails to generalize (often measured by the divergence of performance on training versus testing datasets). This ubiquitous problem in DNNs is often solved by modelers via "noise injections" in the form of noisy or corrupted inputs. The goal of this paper is to argue that the brain faces a similar challenge of overfitting and that nightly dreams evolved to combat the brain's overfitting during its daily learning. That is, dreams are a biological mechanism for increasing generalizability via the creation of corrupted sensory inputs from stochastic activity across the hierarchy of neural structures. Sleep loss, specifically dream loss, leads to an overfitted brain that can still memorize and learn but fails to generalize appropriately. Herein this "overfitted brain hypothesis" is explicitly developed and then compared and contrasted with existing contemporary neuroscientific theories of dreams. Existing evidence for the hypothesis is surveyed within both neuroscience and deep learning, and a set of testable predictions is put forward that can be pursued both and .

摘要

在过去十年中,人们对睡眠进化后的生物学功能的理解有了显著进展。然而,对于梦却没有出现类似的理解。当代神经科学理论常常将梦视为副现象,而且许多关于梦的生物学功能的提议都与梦本身的现象学相矛盾。如今,深度神经网络(DNN)的最新出现终于提供了一个新颖的概念框架,用以理解梦的进化功能。值得注意的是,所有深度神经网络在学习时都面临过拟合问题,即当一个数据集上的性能提高,但网络的性能却无法泛化(通常通过训练数据集与测试数据集上性能的差异来衡量)。深度神经网络中这个普遍存在的问题,建模者通常通过以有噪声或损坏的输入形式进行“噪声注入”来解决。本文的目的是论证大脑面临类似的过拟合挑战,并且夜间的梦进化而来是为了在大脑日常学习过程中对抗过拟合。也就是说,梦是一种生物学机制,通过从神经结构层次中的随机活动创建损坏的感官输入来提高泛化能力。睡眠不足,特别是梦的缺失,会导致大脑过度拟合,使其仍能记忆和学习,但无法适当地泛化。在此,“过度拟合大脑假说”被明确提出,然后与现有的当代梦的神经科学理论进行比较和对比。在神经科学和深度学习领域都对该假说的现有证据进行了审视,并提出了一组可测试的预测,这些预测既可以在神经科学领域进行探索,也可以在深度学习领域进行探索。

相似文献

3
Collaborative learning with corrupted labels.带损坏标签的协作学习。
Neural Netw. 2020 May;125:205-213. doi: 10.1016/j.neunet.2020.02.010. Epub 2020 Feb 26.
6
Meta-Probability Weighting for Improving Reliability of DNNs to Label Noise.用于提高深度神经网络对标签噪声鲁棒性的元概率加权
IEEE J Biomed Health Inform. 2023 Apr;27(4):1726-1734. doi: 10.1109/JBHI.2023.3237033. Epub 2023 Apr 4.
9
An Optimal Transport Analysis on Generalization in Deep Learning.深度学习中的泛化的最优传输分析。
IEEE Trans Neural Netw Learn Syst. 2023 Jun;34(6):2842-2853. doi: 10.1109/TNNLS.2021.3109942. Epub 2023 Jun 1.

引用本文的文献

7
8
Dreams: The Mind's Minecraft.梦境:心灵的《我的世界》。
Cureus. 2024 Jun 3;16(6):e61561. doi: 10.7759/cureus.61561. eCollection 2024 Jun.
9
A role for cortical interneurons as adversarial discriminators.皮层中间神经元作为对抗性鉴别器的作用。
PLoS Comput Biol. 2023 Sep 28;19(9):e1011484. doi: 10.1371/journal.pcbi.1011484. eCollection 2023 Sep.

本文引用的文献

6
Backpropagation and the brain.反向传播与大脑。
Nat Rev Neurosci. 2020 Jun;21(6):335-346. doi: 10.1038/s41583-020-0277-3. Epub 2020 Apr 17.
7
The Dark Room Problem.暗室问题。
Trends Cogn Sci. 2020 May;24(5):346-348. doi: 10.1016/j.tics.2020.02.006. Epub 2020 Mar 17.
8
Effects of sleep and waking on the synaptic ultrastructure.睡眠和清醒对突触超微结构的影响。
Philos Trans R Soc Lond B Biol Sci. 2020 May 25;375(1799):20190235. doi: 10.1098/rstb.2019.0235. Epub 2020 Apr 6.
9
A deep learning framework for neuroscience.深度学习在神经科学中的应用框架。
Nat Neurosci. 2019 Nov;22(11):1761-1770. doi: 10.1038/s41593-019-0520-2. Epub 2019 Oct 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验