Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2122793119. doi: 10.1073/pnas.2122793119. Epub 2022 Apr 6.
Crystallography is the standard for determining the atomic structure of molecules. Unfortunately, many interesting molecules, including an extensive array of biological macromolecules, do not form crystals. While ultrashort and intense X-ray pulses from free-electron lasers are promising for imaging single isolated molecules with the so-called “diffraction before destruction” technique, nanocrystals are still needed for producing sufficient scattering signal for structure retrieval as implemented in serial femtosecond crystallography. Here, we show that a femtosecond laser pulse train may be used to align an ensemble of isolated molecules to a high level transiently, such that the diffraction pattern from the highly aligned molecules resembles that of a single molecule, allowing one to retrieve its atomic structure with a coherent diffraction imaging technique. In our experiment with CO2 molecules, a high degree of alignment is maintained for about 100 fs, and a precisely timed ultrashort relativistic electron beam from a table-top instrument is used to record the diffraction pattern within that duration. The diffraction pattern is further used to reconstruct the distribution of CO2 molecules with atomic resolution. Our results mark a significant step toward imaging noncrystallized molecules with atomic resolution and open opportunities in the study and control of dynamics in the molecular frame that provide information inaccessible with randomly oriented molecules.
晶体学是确定分子原子结构的标准。然而,许多有趣的分子,包括广泛的生物大分子,都无法形成晶体。虽然自由电子激光产生的超短、高强度 X 射线脉冲有望通过所谓的“破坏前衍射”技术对单个孤立分子进行成像,但在实施连续飞秒晶体学中,仍需要纳米晶体来产生足够的散射信号以进行结构检索。在这里,我们展示了飞秒激光脉冲串可以将一组孤立分子暂时高度排列,使得来自高度排列分子的衍射图案类似于单个分子的衍射图案,从而可以使用相干衍射成像技术来获取其原子结构。在我们的 CO2 分子实验中,大约 100fs 内保持高度排列,并且使用台式仪器中的精确定时超短相对论电子束在该时间内记录衍射图案。进一步使用该衍射图案来重构具有原子分辨率的 CO2 分子的分布。我们的结果标志着朝着以原子分辨率对非结晶分子进行成像迈出了重要的一步,并为在分子框架内研究和控制动力学提供了机会,这些动力学提供了随机取向分子无法获得的信息。