Suppr超能文献

QA过滤器:一种用于视频编码的QP自适应卷积神经网络过滤器。

QA-Filter: A QP-Adaptive Convolutional Neural Network Filter for Video Coding.

作者信息

Liu Chao, Sun Heming, Katto Jiro, Zeng Xiaoyang, Fan Yibo

出版信息

IEEE Trans Image Process. 2022;31:3032-3045. doi: 10.1109/TIP.2022.3152627. Epub 2022 Apr 11.

Abstract

Convolutional neural network (CNN)-based filters have achieved great success in video coding. However, in most previous works, individual models were needed for each quantization parameter (QP) band, which is impractical due to limited storage resources. To explore this, our work consists of two parts. First, we propose a frequency and spatial QP-adaptive mechanism (FSQAM), which can be directly applied to the (vanilla) convolution to help any CNN filter handle different quantization noise. From the frequency domain, a FQAM that introduces the quantization step (Qstep) into the convolution is proposed. When the quantization noise increases, the ability of the CNN filter to suppress noise improves. Moreover, SQAM is further designed to compensate for the FQAM from the spatial domain. Second, based on FSQAM, a QP-adaptive CNN filter called QA-Filter that can be used under a wide range of QP is proposed. By factorizing the mixed features to high-frequency and low-frequency parts with the pair of pooling and upsampling operations, the QA-Filter and FQAM can promote each other to obtain better performance. Compared to the H.266/VVC baseline, average 5.25% and 3.84% BD-rate reductions for luma are achieved by QA-Filter with default all-intra (AI) and random-access (RA) configurations, respectively. Additionally, an up to 9.16% BD-rate reduction is achieved on the luma of sequence BasketballDrill. Besides, FSQAM achieves measurably better BD-rate performance compared with the previous QP map method.

摘要

基于卷积神经网络(CNN)的滤波器在视频编码方面取得了巨大成功。然而,在大多数先前的工作中,每个量化参数(QP)频段都需要单独的模型,由于存储资源有限,这是不切实际的。为了探究这一点,我们的工作包括两个部分。首先,我们提出了一种频率和空间QP自适应机制(FSQAM),它可以直接应用于(普通)卷积,以帮助任何CNN滤波器处理不同的量化噪声。从频域角度,提出了一种将量化步长(Qstep)引入卷积的FQAM。当量化噪声增加时,CNN滤波器抑制噪声的能力会提高。此外,还进一步设计了SQAM从空间域对FQAM进行补偿。其次,基于FSQAM,提出了一种名为QA-Filter的QP自适应CNN滤波器,它可以在广泛的QP范围内使用。通过使用池化和上采样操作对混合特征进行高频和低频部分的分解,QA-Filter和FQAM可以相互促进以获得更好的性能。与H.266/VVC基线相比,在默认全帧内(AI)和随机访问(RA)配置下,QA-Filter分别在亮度分量上实现了平均5.25%和3.84%的BD-rate降低。此外,在序列BasketballDrill的亮度分量上实现了高达9.16%的BD-rate降低。此外,与先前的QP映射方法相比,FSQAM在BD-rate性能上有显著提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验