School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Acc Chem Res. 2022 Apr 19;55(8):1109-1123. doi: 10.1021/acs.accounts.1c00774. Epub 2022 Apr 6.
Homogeneous catalysis and biocatalysis have been widely applied in synthetic, medicinal, and energy chemistry as well as synthetic biology. Driven by developments of new computational chemistry methods and better computer hardware, computational chemistry has become an essentially indispensable mechanistic "instrument" to help understand structures and decipher reaction mechanisms in catalysis. In addition, synergy between computational and experimental chemistry deepens our mechanistic understanding, which further promotes the rational design of new catalysts. In this Account, we summarize new or deeper mechanistic insights (including isotope, dispersion, and dynamical effects) into several complex homogeneous reactions from our systematic computational studies along with subsequent experimental studies by different groups. Apart from uncovering new mechanisms in some reactions, a few computational predictions (such as excited-state heavy-atom tunneling, steric-controlled enantioswitching, and a new geminal addition mechanism) based on our mechanistic insights were further verified by ensuing experiments.The Zimmerman group developed a photoinduced triplet di-π-methane rearrangement to form cyclopropane derivatives. Recently, our computational study predicted the first excited-state heavy-atom (carbon) quantum tunneling in one triplet di-π-methane rearrangement, in which the reaction rates and C/C kinetic isotope effects (KIEs) can be enhanced by quantum tunneling at low temperatures. This unprecedented excited-state heavy-atom tunneling in a photoinduced reaction has recently been verified by an experimental C/C KIE study by the Singleton group. Such combined computational and experimental studies should open up opportunities to discover more rare excited-state heavy-atom tunneling in other photoinduced reactions. In addition, we found unexpectedly large secondary KIE values in the five-coordinate Fe(III)-catalyzed hetero-Diels-Alder pathway, even with substantial C-C bond formation, due to the non-negligible equilibrium isotope effect (EIE) derived from altered metal coordination. Therefore, these KIE values cannot reliably reflect transition-state structures for the five-coordinate metal pathway. Furthermore, our density functional theory (DFT) quasi-classical molecular dynamics (MD) simulations demonstrated that the coordination mode and/or spin state of the iron metal as well as an electric field can affect the dynamics of this reaction (e.g., the dynamically stepwise process, the entrance/exit reaction channels).Moreover, we unveiled a new reaction mechanism to account for the uncommon Ru(II)-catalyzed geminal-addition semihydrogenation and hydroboration of silyl alkynes. Our proposed key -Ru(II)-carbene intermediates derived from double migrations on the same alkyne carbon were verified by crossover experiments. Additionally, our DFT MD simulations suggested that the first hydrogen migration transition-state structures may directly and quickly form the key -Ru-carbene structures, thereby "bypassing" the second migration step. Furthermore, our extensive study revealed the origin of the enantioselectivity of the Cu(I)-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with β-substituted alkenyl bicyclic heteroarenes enabled by dual coordination of both substrates. Such mechanistic insights promoted our computational predictions of the enantioselectivity reversal for the corresponding monocyclic heteroarene substrates and the regiospecific addition to the less reactive internal C═C bond of one diene substrate. These predictions were proven by our experimental collaborators. Finally, our mechanistic insights into a few other reactions are also presented. Overall, we hope that these interactive computational and experimental studies enrich our mechanistic understanding and aid in reaction development.
均相催化和生物催化已广泛应用于合成、医药和能源化学以及合成生物学。在新的计算化学方法和更好的计算机硬件的推动下,计算化学已成为一种必不可少的机制“工具”,有助于理解催化中的结构和破译反应机制。此外,计算化学和实验化学之间的协同作用加深了我们对机制的理解,这进一步促进了新催化剂的合理设计。在本专题介绍中,我们总结了我们系统的计算研究以及不同小组随后的实验研究揭示的几个复杂均相反应的新的或更深的机制见解(包括同位素、分散和动力学效应)。除了在一些反应中揭示新的机制外,我们基于机制见解的一些计算预测(例如激发态重原子隧穿、位阻控制的对映体转换以及新的偕二甲基化反应机制)也被随后的实验进一步验证。Zimmerman 小组开发了光诱导三重态二 -π-甲烷重排反应以形成环丙烷衍生物。最近,我们的计算研究预测了第一个光诱导的三重态二 -π-甲烷重排中的激发态重原子(碳)量子隧穿,其中在低温下,反应速率和 C/C 动力学同位素效应(KIE)可以通过量子隧穿增强。最近,Singleton 小组通过 C/C KIE 研究实验验证了这种前所未有的光诱导反应中的激发态重原子隧穿。这种结合计算和实验的研究应该为发现其他光诱导反应中更多罕见的激发态重原子隧穿提供机会。此外,我们发现五配位 Fe(III)催化的杂 Diels-Alder 途径中的二次 KIE 值出乎意料地大,即使存在大量 C-C 键形成,也由于金属配位改变引起的不可忽略的平衡同位素效应(EIE)。因此,这些 KIE 值不能可靠地反映五配位金属途径的过渡态结构。此外,我们的密度泛函理论(DFT)准经典分子动力学(MD)模拟表明,铁金属的配位方式和/或自旋态以及电场会影响反应动力学(例如,动态逐步过程、入口/出口反应通道)。此外,我们揭示了一种新的反应机制来解释 Ru(II)催化的硅烷基炔烃的偕二甲基化和硼氢化的不常见反应。我们提出的关键 -Ru(II)-卡宾中间体来源于同一炔烃碳上的两次迁移,这通过交叉实验得到了验证。此外,我们的 DFT MD 模拟表明,第一个氢迁移过渡态结构可能直接快速形成关键 -Ru-卡宾结构,从而“绕过”第二步迁移。此外,我们的广泛研究揭示了 Cu(I)催化的亚胺叶立德与β取代的烯基双环杂芳烃的 1,3-偶极环加成反应的对映选择性的起源,这种对映选择性是由两个底物的双重配位所实现的。这种机制见解促进了我们对相应单环杂芳烃底物的对映选择性反转以及对一个二烯底物的反应性较弱的内部 C═C 键的区域特异性加成的计算预测。这些预测被我们的实验合作者证明。最后,我们还介绍了对其他几个反应的机制见解。总体而言,我们希望这些交互式计算和实验研究丰富我们的机制理解并有助于反应的发展。