Suppr超能文献

原子工程催化纳米多孔磷化物电极上Ni Co (OH)的氧化还原动力学用于高效镍锌电池

Atomic Engineering Catalyzed Redox Kinetics of Ni Co (OH) on Nanoporous Phosphide Electrode for Efficient Ni-Zn Batteries.

作者信息

Tian Jiaxin, Peng Ming, Luo Min, Lan Jiao, Zhang Yanlong, Tan Yongwen

机构信息

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China.

Shanghai Technical Institute of Electronics & Information, Shanghai, 201411, China.

出版信息

Small. 2022 May;18(19):e2200452. doi: 10.1002/smll.202200452. Epub 2022 Apr 7.

Abstract

Aqueous nickel-zinc (Ni-Zn) batteries with excellent safety and environmental benignity are promising candidates for sustainable energy storage. However, the inferior conductivity and inevitable phase transition of trditional Ni-based cathodes limit the redox kinetics and lead to restricted electrode specific capacity and device energy density. Here, a Ni Co (OH) electrode doped with Pd, Ag, and Au atoms is constructed for catalyzing the redox kinetics on the conductive nanoporous phosphide. Density functional theory calculations and experimental results reveal that the introduction of the Ag atomic dopants can effectively modulate the electron structure and optimize the OH adsorption energy, thereby accelerating the catalyzed redox kinetics of Ni Co (OH) by the facilitated charge transfer at the active sites around metal dopants. Consequently, the assembled Ni-Zn battery delivers an ultrahigh power density of 7.85 W cm and energy density of 49.53 mW h cm , with a long-term cycling stability. The cooperation of atomic catalysis and redox kinetics will inspire more exploration of efficient energy materials and devices.

摘要

具有出色安全性和环境友好性的水系镍锌(Ni-Zn)电池是可持续储能的有前途的候选者。然而,传统镍基阴极的导电性较差和不可避免的相变限制了氧化还原动力学,并导致电极比容量和器件能量密度受限。在此,构建了一种掺杂有钯、银和金原子的NiCo(OH)电极,用于催化导电纳米多孔磷化物上的氧化还原动力学。密度泛函理论计算和实验结果表明,银原子掺杂剂的引入可以有效调节电子结构并优化OH吸附能,从而通过促进金属掺杂剂周围活性位点的电荷转移来加速NiCo(OH)的催化氧化还原动力学。因此,组装的镍锌电池具有7.85 W cm的超高功率密度和49.53 mW h cm的能量密度,并具有长期循环稳定性。原子催化与氧化还原动力学的协同作用将激发对高效能源材料和器件的更多探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验