Suppr超能文献

用于水系碱性锌电池的先进镍基阴极的最新进展与展望

Recent progress and perspectives of advanced Ni-based cathodes for aqueous alkaline Zn batteries.

作者信息

Ma Yanfen, Song Xin, Hu Wenjing, Xiong Jiawei, Chu Pan, Fan Yanchen, Zhang Biao, Zhou Hongyu, Liu Chenguang, Zhao Yi

机构信息

Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China.

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China.

出版信息

Front Chem. 2024 Nov 26;12:1483867. doi: 10.3389/fchem.2024.1483867. eCollection 2024.

Abstract

Rechargeable aqueous alkaline Zn-Ni batteries (AZNBs) are considered a potential contender for energy storage fields and portable devices due to their inherent safety, high output voltage, high theoretical capacity and environmental friendliness. Despite the facilitated development of AZNBs by many investigations, its practical application is still restricted by inadequate energy density, sluggish kinetics, and poor stability. Therefore, Ni-based cathodes with boosted redox chemistry and enhanced structural integrity is essential for the high-performance AZNBs. Herein, this review focus on critical bottlenecks and effective design strategies of the representative Ni-based cathode materials. Specifically, nanostructured optimization, defect engineering, ion doping, heterostructure regulation and ligand engineering have been employed from the fundamental aspects for high-energy and long-lifespan Ni-based cathodes. Finally, further exploration in failure mechanism, binder-free battery configurations, practical application scenarios, as well as battery recycling are considered as valuable directions for the future development of advanced AZNBs.

摘要

可充电水性碱性锌镍电池(AZNBs)因其固有的安全性、高输出电压、高理论容量和环境友好性,被认为是储能领域和便携式设备的潜在竞争者。尽管许多研究推动了AZNBs的发展,但其实际应用仍受到能量密度不足、动力学缓慢和稳定性差的限制。因此,具有增强氧化还原化学性质和增强结构完整性的镍基阴极对于高性能AZNBs至关重要。在此,本综述聚焦于代表性镍基阴极材料的关键瓶颈和有效设计策略。具体而言,从高能长寿命镍基阴极的基础层面采用了纳米结构优化、缺陷工程、离子掺杂、异质结构调控和配体工程。最后,对失效机制、无粘结剂电池配置、实际应用场景以及电池回收的进一步探索被视为先进AZNBs未来发展的有价值方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5618/11628261/2445ddd24a7d/fchem-12-1483867-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验