Suppr超能文献

通过机器学习对泪液代谢指纹图谱进行青光眼特征分析。

Glaucoma Characterization by Machine Learning of Tear Metabolic Fingerprinting.

作者信息

Wu Jiao, Xu Mengqiao, Liu Wanshan, Huang Yida, Wang Ruimin, Chen Wei, Feng Lei, Liu Ning, Sun Xiaodong, Zhou Minwen, Qian Kun

机构信息

State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.

出版信息

Small Methods. 2022 May;6(5):e2200264. doi: 10.1002/smtd.202200264. Epub 2022 Apr 7.

Abstract

Glaucoma is a common optic neuropathy disease affecting over 76 million people. Both timely diagnosis and progression monitoring are critical but challenging. Conventional characterization of glaucoma needs a combination of methods, calling for tedious procedures and experienced doctors. Herein, a platform through machine learning of tear metabolic fingerprinting (TMF) using nanoparticle enhanced laser desorption-ionization mass spectrometry is built. Direct TMF is obtained noninvasively, with fast speed and high reproducibility, using trace tear samples (down to 10 nL). Consequently, glaucoma patients are screened against healthy controls with the area under the curve (AUC) of 0.866, through machine learning of TMF. Further, primary open-angle glaucoma (POAG) is differentiated from primary angle-closure glaucoma (PACG) and an early-stage POAG is identified. Finally, a biomarker panel of six metabolites for glaucoma characterization (including screening, subtyping, and early diagnosis) with AUC of 0.827-0.891 is constructed, showing related metabolic pathways. The work will provide insights into eye diseases not limited to glaucoma.

摘要

青光眼是一种常见的视神经病变疾病,影响着超过7600万人。及时诊断和病情进展监测都至关重要,但也具有挑战性。青光眼的传统特征描述需要多种方法结合,这需要繁琐的程序和经验丰富的医生。在此,构建了一个通过使用纳米颗粒增强激光解吸电离质谱对泪液代谢指纹图谱(TMF)进行机器学习的平台。使用微量泪液样本(低至10纳升),以非侵入性方式快速且高度可重复地获得直接TMF。因此,通过对TMF进行机器学习,以0.866的曲线下面积(AUC)对青光眼患者与健康对照进行筛查。此外,将原发性开角型青光眼(POAG)与原发性闭角型青光眼(PACG)区分开来,并识别出早期POAG。最后,构建了一个用于青光眼特征描述(包括筛查、亚型分类和早期诊断)的六种代谢物生物标志物面板,AUC为0.827 - 0.891,显示了相关的代谢途径。这项工作将为不限于青光眼的眼部疾病提供见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验