Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Kansas City, MO 64110, USA; National Institute of Biological Sciences, Beijing 102206, China.
Curr Biol. 2022 May 23;32(10):2272-2280.e6. doi: 10.1016/j.cub.2022.03.038. Epub 2022 Apr 6.
Nutrient availability varies seasonally and spatially in the wild. While many animals, such as hibernating animals or migrating birds, evolved strategies to overcome periods of nutrient scarcity, the cellular mechanisms of these strategies are poorly understood. Cave environments represent an example of nutrient-deprived environments, since the lack of sunlight and therefore primary energy production drastically diminishes the nutrient availability. Here, we used Astyanax mexicanus, which includes river-dwelling surface fish and cave-adapted cavefish populations, to study the genetic adaptation to nutrient limitations. We show that cavefish populations store large amounts of fat in different body regions when fed ad libitum in the lab. We found higher expression of lipogenesis genes in cavefish livers when fed the same amount of food as surface fish, suggesting an improved ability of cavefish to use lipogenesis to convert available energy into triglycerides for storage into adipose tissue. Moreover, the lipid metabolism regulator, peroxisome proliferator-activated receptor γ (Pparγ), is upregulated at both transcript and protein levels in cavefish livers. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that Pparγ binds cavefish promoter regions of genes to a higher extent than surface fish and inhibiting Pparγ in vivo decreases fat accumulation in A. mexicanus. Finally, we identified nonsense mutations in per2, a known repressor of Pparγ, providing a possible regulatory mechanism of Pparγ in cavefish. Taken together, our study reveals that upregulated Pparγ promotes higher levels of lipogenesis in the liver and contributes to higher body fat accumulation in cavefish populations, an important adaptation to nutrient-limited environments.
在野外,营养物质的可利用性会随季节和空间而变化。虽然许多动物,如冬眠动物或迁徙鸟类,已经进化出了克服营养匮乏期的策略,但这些策略的细胞机制还知之甚少。洞穴环境就是营养物质匮乏环境的一个例子,因为缺乏阳光,从而大大减少了初级能源的产生,这使得营养物质的可利用性降低。在这里,我们使用包括河流栖居的表层鱼类和适应洞穴的洞穴鱼类种群的 Astyanax mexicanus,来研究对营养限制的遗传适应。我们表明,当在实验室中自由喂食时,洞穴鱼类会在不同的身体部位储存大量脂肪。我们发现,当给予与表层鱼类相同数量的食物时,洞穴鱼类肝脏中的脂肪生成基因表达更高,这表明洞穴鱼类能够更好地利用脂肪生成将可用能量转化为甘油三酯,以便储存到脂肪组织中。此外,脂质代谢调节剂过氧化物酶体增殖物激活受体 γ(Pparγ)在洞穴鱼类肝脏中的转录本和蛋白质水平都上调。染色质免疫沉淀测序(ChIP-seq)显示,Pparγ在洞穴鱼类的基因启动子区域的结合程度高于表层鱼类,并且在体内抑制 Pparγ 会减少 A. mexicanus 中的脂肪积累。最后,我们在 per2 中发现了无意义突变,per2 是 Pparγ 的已知抑制剂,为洞穴鱼类中 Pparγ 的可能调控机制提供了证据。总之,我们的研究表明,上调的 Pparγ 促进了肝脏中更高水平的脂肪生成,并有助于洞穴鱼类种群中更高的体脂肪积累,这是对营养有限环境的重要适应。