Suppr超能文献

复合材料废物回收:Aspen plus 中热解蒸气和气体升级过程的预测模拟。

Composite waste recycling: Predictive simulation of the pyrolysis vapours and gases upgrading process in Aspen plus.

机构信息

Chemical and Environmental Engineering Department, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013, Bilbao, Spain.

Chemical and Environmental Engineering Department, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013, Bilbao, Spain.

出版信息

Chemosphere. 2022 Aug;300:134499. doi: 10.1016/j.chemosphere.2022.134499. Epub 2022 Apr 4.

Abstract

Waste generation is one of the greatest problems of present times, and the recycling of carbon fibre reinforced composites one big challenge to face. Currently, no resin valorisation is done in thermal fibre recycling methods. However, when pyrolysis is used, additional valuable compounds (syngas or H-rich gas) could be obtained by upgrading the generated vapours and gases. This work presents the thermodynamic and kinetic multi-reaction modelling of the pyrolysis vapours and gases upgrading process in Aspen Plus software. These models forecast the theoretical and in-between scenario of a thermal upgrading process of an experimentally characterised vapours and gases stream (a blend of thirty-five compounds). Indeed, the influence of temperature (500 °C-1200 °C) and pressure (ΔP = 0, 1 and 2 bar) operating parameters are analysed in the outlet composition, residence time and possible reaction mechanisms occurring. Validation of the kinetic model has been done comparing predicted outlet composition with experimental data (at 700 °C and 900 °C with ΔP = 0 bar) for H (g), CO (g), CO (g), CH (g), HO (v) and C (s). Kinetic and experimental results show the same tendency with temperature, validating the model for further research. Good kinetic fit is obtained for H (g) (absolute error: 0.5 wt% at constant temperature and 0.3 wt% at variable temperature) and HO (v) shows the highest error at variable T (8.8 wt%). Both simulation and experimental results evolve towards simpler, less toxic and higher generation of hydrogen-rich gas with increasing operating temperature and pressure.

摘要

废物产生是当今时代最大的问题之一,而碳纤维增强复合材料的回收是面临的一大挑战。目前,在热纤维回收方法中没有对树脂进行增值处理。然而,当使用热解时,通过对生成的蒸气和气体进行升级,可以获得额外有价值的化合物(合成气或富 H 气体)。本工作在 Aspen Plus 软件中提出了热解蒸气和气体升级过程的热力学和多反应动力学建模。这些模型预测了理论和中间情况下的热升级过程的理论和中间情况下的蒸气和气体流(由三十五种化合物组成的混合物)。实际上,分析了温度(500°C-1200°C)和压力(ΔP=0、1 和 2 巴)操作参数对出口组成、停留时间和可能发生的反应机制的影响。通过将预测的出口组成与实验数据(在 700°C 和 900°C 下ΔP=0 巴时 H(g)、CO(g)、CO(g)、CH(g)、HO(v)和 C(s))进行比较,验证了动力学模型。动力学和实验结果均显示出与温度相同的趋势,从而验证了模型的进一步研究。对于 H(g)(恒温时绝对误差为 0.5wt%,变温时为 0.3wt%)和 HO(v)获得了良好的动力学拟合,后者在变温时误差最高(8.8wt%)。随着操作温度和压力的升高,模拟和实验结果均朝着更简单、毒性更低和生成更多富氢气体的方向发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验