Suppr超能文献

基于 RNA 测序表达数据的机器学习鉴定低级别胶质瘤中的免疫治疗靶点。

Machine Learning Identification of Immunotherapy Targets in Low-Grade Glioma Using RNA Sequencing Expression Data.

机构信息

University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, Pennsylvania, USA.

University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, Pennsylvania, USA.

出版信息

World Neurosurg. 2022 Jul;163:e349-e362. doi: 10.1016/j.wneu.2022.03.123. Epub 2022 Apr 4.

Abstract

OBJECTIVE

Immunotherapy has revolutionized cancer treatment in the past decade, but significant hurdles remain. Human studies with immune checkpoint inhibitors targeting programmed cell death protein have demonstrated suboptimal efficacy in the setting of low-grade gliomas (LGGs). Identification of mechanisms leading to inadequate anti-tumor immunity is paramount. The current study evaluates and validates barriers to immunotherapy using a novel machine learning algorithm.

METHODS

We utilized The Cancer Genome Atlas (TCGA) to generate expression levels of 28 immune genes related to known immunotherapeutic targets or lymphocyte cytolytic activity. We created training and testing groups and 3 machine learning models to determine the genes most highly correlated to cytolytic activity (CYT). The 3 models were run through multiple regression by exhaustive selection, LASSO, and random forest. We validated computational results by comparing expression of pertinent genes in patient-derived glioma samples.

RESULTS

Our models demonstrated linearity, a low mean-squared error, and consistent results with respect to the most important variables. Expression of ICOS, IDO1, and CD40 were the most important variables in all models and demonstrated positive correlation with CYT. Other variables included TIGIT and CD137. Genetic analysis from 3 IDH-mutants (IDHm) and 3 IDH-wild type (IDHwt) patient-derived glioma samples validated TCGA data and demonstrated lower levels of CYT in IDHm gliomas compared with IDHwt.

CONCLUSIONS

This novel methodology has elucidated 3 potential targets for immunotherapy development in LGGs. We also demonstrated a novel method of analyzing data using advanced statistical techniques that can be further used in developing treatments for other diseases as well.

摘要

目的

免疫疗法在过去十年中彻底改变了癌症治疗,但仍存在重大障碍。针对程序性细胞死亡蛋白的免疫检查点抑制剂的人体研究表明,在低级别胶质瘤 (LGG) 中疗效不佳。确定导致抗肿瘤免疫不足的机制至关重要。本研究使用新型机器学习算法评估和验证免疫疗法的障碍。

方法

我们利用癌症基因组图谱 (TCGA) 生成与已知免疫治疗靶点或淋巴细胞细胞毒性活性相关的 28 个免疫基因的表达水平。我们创建了训练和测试组,并使用 3 种机器学习模型来确定与细胞毒性 (CYT) 相关性最高的基因。通过穷举选择、LASSO 和随机森林对这 3 个模型进行了多次回归。我们通过比较患者来源的胶质瘤样本中相关基因的表达来验证计算结果。

结果

我们的模型表现出线性、低均方误差和与最重要变量一致的结果。ICOS、IDO1 和 CD40 的表达在所有模型中都是最重要的变量,并且与 CYT 呈正相关。其他变量包括 TIGIT 和 CD137。来自 3 个异柠檬酸脱氢酶突变 (IDHm) 和 3 个异柠檬酸脱氢酶野生型 (IDHwt) 患者来源的胶质瘤样本的遗传分析验证了 TCGA 数据,并表明 IDHm 胶质瘤中的 CYT 水平低于 IDHwt。

结论

这种新方法阐明了 LGG 免疫疗法发展的 3 个潜在靶点。我们还展示了一种使用先进统计技术分析数据的新方法,该方法也可进一步用于开发其他疾病的治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验