Department of Computer Science and Artificial Intelligence, University of Granada, Granada 18010, Spain.
Department of Electrical Computer Engineering, Northwestern University, Evanston, IL, 60208 USA.
Comput Methods Programs Biomed. 2022 Jun;219:106783. doi: 10.1016/j.cmpb.2022.106783. Epub 2022 Mar 30.
Intracranial hemorrhage (ICH) is a life-threatening emergency that can lead to brain damage or death, with high rates of mortality and morbidity. The fast and accurate detection of ICH is important for the patient to get an early and efficient treatment. To improve this diagnostic process, the application of Deep Learning (DL) models on head CT scans is an active area of research. Although promising results have been obtained, many of the proposed models require slice-level annotations by radiologists, which are costly and time-consuming.
We formulate the ICH detection as a problem of Multiple Instance Learning (MIL) that allows training with only scan-level annotations. We develop a new probabilistic method based on Deep Gaussian Processes (DGP) that is able to train with this MIL setting and accurately predict ICH at both slice- and scan-level. The proposed DGPMIL model is able to capture complex feature relations by using multiple Gaussian Process (GP) layers, as we show experimentally.
To highlight the advantages of DGPMIL in a general MIL setting, we first conduct several controlled experiments on the MNIST dataset. We show that multiple GP layers outperform one-layer GP models, especially for complex feature distributions. For ICH detection experiments, we use two public brain CT datasets (RSNA and CQ500). We first train a Convolutional Neural Network (CNN) with an attention mechanism to extract the image features, which are fed into our DGPMIL model to perform the final predictions. The results show that DGPMIL model outperforms VGPMIL as well as the attention-based CNN for MIL and other state-of-the-art methods for this problem. The best performing DGPMIL model reaches an AUC-ROC of 0.957 (resp. 0.909) and an AUC-PR of 0.961 (resp. 0.889) on the RSNA (resp. CQ500) dataset.
The competitive performance at slice- and scan-level shows that DGPMIL model provides an accurate diagnosis on slices without the need for slice-level annotations by radiologists during training. As MIL is a common problem setting, our model can be applied to a broader range of other tasks, especially in medical image classification, where it can help the diagnostic process.
颅内出血(ICH)是一种危及生命的紧急情况,可导致脑损伤或死亡,具有高死亡率和发病率。快速准确地检测 ICH 对于患者获得早期和有效的治疗非常重要。为了改善这一诊断过程,深度学习(DL)模型在头部 CT 扫描中的应用是一个活跃的研究领域。尽管已经取得了有希望的结果,但许多提出的模型都需要放射科医生进行切片级别的注释,这既昂贵又耗时。
我们将 ICH 检测表述为一个多实例学习(MIL)问题,该问题允许仅使用扫描级别的注释进行训练。我们开发了一种新的基于深度高斯过程(DGP)的概率方法,该方法能够在这种 MIL 设置中进行训练,并准确地在切片和扫描级别预测 ICH。所提出的 DGPMIL 模型能够通过使用多个高斯过程(GP)层来捕获复杂的特征关系,正如我们在实验中所展示的那样。
为了突出 DGPMIL 在一般 MIL 设置中的优势,我们首先在 MNIST 数据集上进行了几次对照实验。我们表明,多层 GP 模型优于单层 GP 模型,尤其是对于复杂的特征分布。对于 ICH 检测实验,我们使用了两个公共脑 CT 数据集(RSNA 和 CQ500)。我们首先使用具有注意力机制的卷积神经网络(CNN)提取图像特征,然后将这些特征输入到我们的 DGPMIL 模型中进行最终预测。结果表明,DGPMIL 模型在 MIL 方面优于 VGPMIL 以及用于该问题的其他最新方法,在其他方面也优于基于注意力的 CNN。表现最好的 DGPMIL 模型在 RSNA(分别为 CQ500)数据集上达到了 0.957(分别为 0.909)的 AUC-ROC 和 0.961(分别为 0.889)的 AUC-PR。
在切片和扫描级别上的竞争表现表明,DGPMIL 模型在训练过程中不需要放射科医生进行切片级别的注释即可对切片进行准确诊断。由于 MIL 是一种常见的问题设置,因此我们的模型可以应用于更广泛的其他任务,特别是在医学图像分类中,它可以帮助诊断过程。