Suppr超能文献

基于卷积和长短时记忆神经网络的 3D CT 扫描中准确且高效的颅内出血检测和亚型分类。

Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks.

机构信息

Department of Computer Science, University of Bucharest, 14 Academiei, 010014 Bucharest, Romania.

Romanian Young Academy, University of Bucharest, 90 Panduri, 050663 Bucharest, Romania.

出版信息

Sensors (Basel). 2020 Oct 1;20(19):5611. doi: 10.3390/s20195611.

Abstract

In this paper, we present our system for the RSNA Intracranial Hemorrhage Detection challenge, which is based on the RSNA 2019 Brain CT Hemorrhage dataset. The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN) that takes as input individual CT slices, and a Long Short-Term Memory (LSTM) network that takes as input multiple feature embeddings provided by the CNN. For efficient processing, we consider various feature selection methods to produce a subset of useful CNN features for the LSTM. Furthermore, we reduce the CT slices by a factor of 2×, which enables us to train the model faster. Even if our model is designed to balance speed and accuracy, we report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants. While our computing infrastructure does not allow it, processing CT slices at their original scale is likely to improve performance. In order to enable others to reproduce our results, we provide our code as open source. After the challenge, we conducted a subjective intracranial hemorrhage detection assessment by radiologists, indicating that the performance of our deep model is on par with that of doctors specialized in reading CT scans. Another contribution of our work is to integrate Grad-CAM visualizations in our system, providing useful explanations for its predictions. We therefore consider our system as a viable option when a fast diagnosis or a second opinion on intracranial hemorrhage detection are needed.

摘要

在本文中,我们展示了我们针对 RSNA 颅内出血检测挑战赛的系统,该系统基于 RSNA 2019 年的脑部 CT 出血数据集。所提出的系统基于一个轻量级的深度神经网络架构,该架构由一个卷积神经网络(CNN)组成,该网络接收单个 CT 切片作为输入,以及一个长短期记忆(LSTM)网络,该网络接收由 CNN 提供的多个特征嵌入作为输入。为了实现高效处理,我们考虑了各种特征选择方法,以从 CNN 中产生一组对 LSTM 有用的有用特征。此外,我们将 CT 切片缩小了 2×,这使我们能够更快地训练模型。即使我们的模型旨在平衡速度和准确性,我们在最终测试集上报告的加权平均对数损失仍为 0.04989,在总共 1345 名参与者中排名前 30(2%)。虽然我们的计算基础设施不允许这样做,但以原始比例处理 CT 切片可能会提高性能。为了使其他人能够重现我们的结果,我们提供了我们的代码作为开源。在挑战赛之后,我们由放射科医生进行了颅内出血检测的主观评估,表明我们的深度模型的性能与专门阅读 CT 扫描的医生相当。我们工作的另一个贡献是在我们的系统中集成 Grad-CAM 可视化,为其预测提供有用的解释。因此,我们认为我们的系统是在需要快速诊断或颅内出血检测的第二意见时的一种可行选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a67a/7582288/2eca318002b8/sensors-20-05611-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验