Zhang Ying, Tao Jie, Zhang Chenglin, Zhao Huaping, Lei Yong
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau D-98693, Germany.
Nanotechnology. 2022 May 3;33(29). doi: 10.1088/1361-6528/ac6527.
Carbon nanomaterials have become a promising anode material for potassium-ion batteries (KIBs) due to their abundant resources, low cost, and excellent conductivity. However, among carbon materials, the sluggish reaction kinetics and inferior cycle life severely restrict their commercial development as KIBs anodes. It is still a huge challenge to develop carbon materials with various structural advantages and ideal electrochemical properties. Therefore, it is imperative to find a carbon material with heteroatom doping and suitable nanostructure to achieve excellent electrochemical performance. Benefiting from a NaSOtemplate-assisted method and KOH activation process, the KOH activated nitrogen and oxygen co-doped tubular carbon (KNOCTC) material with a porous structure exhibits an impressive reversible capacity of 343 mAh gat 50 mA gand an improved cyclability of 137 mAh gat 2 A gafter 3000 cycles with almost no capacity decay. The kinetic analysis indicates that the storage mechanism in KNOCTC is attributed to the pseudocapacitive process during cycling. Furthermore, the new synthesis route of KNOCTC provides a new opportunity to explore carbon-based potassium storage anode materials with high capacity and cycling performance.
由于碳纳米材料资源丰富、成本低且导电性优异,它们已成为钾离子电池(KIBs)颇具前景的负极材料。然而,在碳材料中,缓慢的反应动力学和较差的循环寿命严重限制了它们作为KIBs负极的商业发展。开发具有各种结构优势和理想电化学性能的碳材料仍然是一个巨大的挑战。因此,必须找到一种具有杂原子掺杂和合适纳米结构的碳材料,以实现优异的电化学性能。受益于NaSO模板辅助法和KOH活化过程,具有多孔结构的KOH活化氮氧共掺杂管状碳(KNOCTC)材料在50 mA g时表现出令人印象深刻的343 mAh g的可逆容量,在2 A g下循环3000次后容量几乎没有衰减,循环稳定性提高到137 mAh g。动力学分析表明,KNOCTC中的存储机制归因于循环过程中的赝电容过程。此外,KNOCTC的新合成路线为探索具有高容量和循环性能的碳基钾存储负极材料提供了新机会。