Suppr超能文献

对 184 种细胞系的 DNA 复制时间进行综合分析表明,MCM10 在复制时间调控中起作用。

Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for MCM10 in replication timing regulation.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

出版信息

Hum Mol Genet. 2022 Aug 25;31(17):2899-2917. doi: 10.1093/hmg/ddac082.

Abstract

Cellular proliferation depends on the accurate and timely replication of the genome. Several genetic diseases are caused by mutations in key DNA replication genes; however, it remains unclear whether these genes influence the normal program of DNA replication timing. Similarly, the factors that regulate DNA replication dynamics are poorly understood. To systematically identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a rigorous approach that considers the background variability of replication timing, we concluded that most samples displayed normal replication timing. However, mutations in two genes showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of replication timing. The second was MCM10, a highly conserved member of the pre-replication complex. Cells from a single patient carrying MCM10 mutations demonstrated replication timing variability comprising 46% of the genome and at different locations than RIF1 knockouts. Replication timing alterations in the mutated MCM10 cells were predominantly comprised of replication delays and initiation site gains and losses. Taken together, this study demonstrates the remarkable robustness of the human replication timing program and reveals MCM10 as a novel candidate modulator of DNA replication timing.

摘要

细胞增殖依赖于基因组的准确和及时复制。一些遗传疾病是由关键 DNA 复制基因的突变引起的;然而,这些基因是否影响 DNA 复制时间的正常程序仍不清楚。同样,调节 DNA 复制动力学的因素也知之甚少。为了系统地鉴定复制时间的反式作用调节剂,我们对来自三种细胞类型的 184 种细胞系中的复制进行了分析,其中包括 60 种不同的基因敲除或遗传疾病。通过一种严格的方法,考虑了复制时间的背景可变性,我们得出结论,大多数样本显示出正常的复制时间。然而,两个基因的突变显示出一致的异常复制时间。第一个基因是 RIF1,它是复制时间的已知调节剂。第二个是 MCM10,它是预复制复合物的一个高度保守成员。携带 MCM10 突变的单个患者的细胞显示出复制时间的可变性,包括基因组的 46%,并且位于与 RIF1 敲除不同的位置。突变的 MCM10 细胞中的复制时间改变主要由复制延迟和起始位点的增益和损失组成。总之,这项研究表明人类复制时间程序具有惊人的稳健性,并揭示了 MCM10 作为 DNA 复制时间的新型候选调节剂。

相似文献

2
Budding yeast mcm10/dna43 mutant requires a novel repair pathway for viability.
Genes Cells. 2003 May;8(5):465-80. doi: 10.1046/j.1365-2443.2003.00648.x.
4
Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases.
Cancer Metastasis Rev. 2024 Dec;43(4):1353-1371. doi: 10.1007/s10555-024-10209-3. Epub 2024 Sep 6.
5
Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.
PLoS One. 2014 May 30;9(5):e98501. doi: 10.1371/journal.pone.0098501. eCollection 2014.
6
Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation.
Nucleic Acids Res. 2013 Apr;41(7):4065-79. doi: 10.1093/nar/gkt131. Epub 2013 Feb 28.
7
Mcm10: The glue at replication forks.
Cell Cycle. 2016 Nov 16;15(22):3024-3025. doi: 10.1080/15384101.2016.1216925. Epub 2016 Aug 2.
8
Enigmatic roles of Mcm10 in DNA replication.
Trends Biochem Sci. 2013 Apr;38(4):184-94. doi: 10.1016/j.tibs.2012.12.003. Epub 2013 Jan 17.
9
Mcm10 coordinates the timely assembly and activation of the replication fork helicase.
Nucleic Acids Res. 2016 Jan 8;44(1):315-29. doi: 10.1093/nar/gkv1260. Epub 2015 Nov 17.

引用本文的文献

1
Structural variation, selection, and diversification of the gene family from the human pangenome.
bioRxiv. 2025 Feb 5:2025.02.04.636496. doi: 10.1101/2025.02.04.636496.
2
Genome organization and stability in mammalian pre-implantation development.
DNA Repair (Amst). 2024 Dec;144:103780. doi: 10.1016/j.dnarep.2024.103780. Epub 2024 Oct 26.
3
Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases.
Cancer Metastasis Rev. 2024 Dec;43(4):1353-1371. doi: 10.1007/s10555-024-10209-3. Epub 2024 Sep 6.
4
The landscape of somatic mutations in lymphoblastoid cell lines.
Cell Genom. 2023 May 2;3(6):100305. doi: 10.1016/j.xgen.2023.100305. eCollection 2023 Jun 14.
5
H4S47 O-GlcNAcylation regulates the activation of mammalian replication origins.
Nat Struct Mol Biol. 2023 Jun;30(6):800-811. doi: 10.1038/s41594-023-00998-6. Epub 2023 May 18.
6
Replication timing and transcriptional control: beyond cause and effect - part IV.
Curr Opin Genet Dev. 2023 Apr;79:102031. doi: 10.1016/j.gde.2023.102031. Epub 2023 Mar 9.
7
Identification and comprehensive analysis of circRNA-miRNA-mRNA regulatory networks in osteoarthritis.
Front Immunol. 2023 Jan 9;13:1050743. doi: 10.3389/fimmu.2022.1050743. eCollection 2022.
8
Over-Activation of Minichromosome Maintenance Protein 10 Promotes Genomic Instability in Early Stages of Breast Cancer.
Int J Biol Sci. 2022 May 29;18(9):3827-3844. doi: 10.7150/ijbs.69344. eCollection 2022.

本文引用的文献

2
Delayed DNA replication in haploid human embryonic stem cells.
Genome Res. 2021 Dec;31(12):2155-2169. doi: 10.1101/gr.275953.121. Epub 2021 Nov 22.
3
The genetic architecture of DNA replication timing in human pluripotent stem cells.
Nat Commun. 2021 Nov 19;12(1):6746. doi: 10.1038/s41467-021-27115-9.
4
Replication timing maintains the global epigenetic state in human cells.
Science. 2021 Apr 23;372(6540):371-378. doi: 10.1126/science.aba5545. Epub 2021 Apr 22.
6
TIGER: inferring DNA replication timing from whole-genome sequence data.
Bioinformatics. 2021 Nov 18;37(22):4001-4005. doi: 10.1093/bioinformatics/btab166.
7
Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms.
Int J Mol Sci. 2021 Jan 18;22(2):911. doi: 10.3390/ijms22020911.
8
Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases.
Trends Genet. 2021 Apr;37(4):317-336. doi: 10.1016/j.tig.2020.09.008. Epub 2020 Oct 8.
9
Human NK cell deficiency as a result of biallelic mutations in MCM10.
J Clin Invest. 2020 Oct 1;130(10):5272-5286. doi: 10.1172/JCI134966.
10
Genomic methods for measuring DNA replication dynamics.
Chromosome Res. 2020 Mar;28(1):49-67. doi: 10.1007/s10577-019-09624-y. Epub 2019 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验