Suppr超能文献

不同左心室射血分数心力衰竭患者睡眠呼吸障碍的患病率及临床特征。

Prevalence and clinical characteristics of sleep-disordered breathing in patients with heart failure of different left ventricular ejection fractions.

机构信息

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, 210009, Nanjing, China.

Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.

出版信息

Sleep Breath. 2023 Mar;27(1):245-253. doi: 10.1007/s11325-022-02611-4. Epub 2022 Apr 8.

Abstract

PURPOSES

The prevalence of sleep-disordered breathing (SDB) is high in patients with heart failure (HF), while the prevalence of SDB in HF with different left ventricular ejection fractions (LVEF) has rarely been reported. We aimed to explore the prevalence and clinical characteristics of SDB in patients with HF having different LVEF.

METHODS

Patients with stable HF were consecutively enrolled. All patients underwent portable overnight cardiorespiratory polygraphy and echocardiography. According to their LVEF, the patients were divided into the HFrEF (HF with reduced EF, EF < 40%), HFmrEF (HF with mid-range EF, 40 ≤ EF < 50), and HFpEF groups (HF with preserved EF, EF ≥ 50%). The prevalence and clinical data of SDB among the 3 groups were then compared.

RESULTS

A total of 252 patients, including 134 men, were enrolled in the study. The prevalence of SDB in patients with HF was 70%. Obstructive sleep apnea (OSA) was diagnosed in 48% and central sleep apnea (CSA) in 22%. The prevalence of SDB in the HFrEE, HFmrEF, and HFpEF groups was 86%, 86%, and 62%, respectively (P = 0.001). The prevalence of OSA among the 3 groups was 42%, 47%, and 49%, respectively (P = 0.708), while the prevalence of CSA among the 3 groups was 44%, 40%, and 13% (P < 0.001). Logistic regression analysis revealed that age and BMI were independent risk factors for OSA in patients with HF, while LVEF and smoking were independent risk factors for CSA in patients with HF. Correlational analyses revealed that LVEF was negatively correlated with apnea-hypopnea index (AHI) (r = -0.309, P < 0.001) and central apnea index (CAI) ( r = -0.558, P < 0.001), while there was no significant correlation with obstructive apnea index (OAI). The ROC curve revealed that LVEF could predict the occurrence of CSA and SDB, with AUC = 0.683 (95%CI 0.600-0.767, P < 0.001) and AUC = 0.630 (95%CI 0.559-0.702, P = 0.001), but not of OSA.

CONCLUSIONS

SDB was highly common in HF, and the prevalence of SDB was different in HF with different LVEF, mainly due to the difference in cardiac functions. The prevalence and severity of SDB in HFrEF and HFmrEF were significantly higher than those in HFpEF, which was mainly related to the increase in CSA. When HFmrEF was similar to HFrEF in cardiac functions, the prevalence, type, and severity of SDB were similar between the two groups. Changes in LVEF had a significant impact on CAI, but not on OAI. LVEF can predict the occurrence of CSA and SDB to a certain extent.

摘要

目的

睡眠呼吸障碍(SDB)在心力衰竭(HF)患者中很常见,而不同左心室射血分数(LVEF)的 HF 患者中 SDB 的患病率很少有报道。我们旨在探讨不同 LVEF 的 HF 患者中 SDB 的患病率和临床特征。

方法

连续纳入稳定的 HF 患者。所有患者均接受便携式夜间心肺多导睡眠图和超声心动图检查。根据 LVEF 将患者分为射血分数降低的 HF(HFrEF,EF<40%)、射血分数中间范围的 HF(HFmrEF,40%≤EF<50%)和射血分数保留的 HF(HFpEF,EF≥50%)组。然后比较 3 组患者中 SDB 的患病率和临床数据。

结果

共纳入 252 例患者,其中 134 例为男性。HF 患者 SDB 的患病率为 70%。诊断为阻塞性睡眠呼吸暂停(OSA)占 48%,中枢性睡眠呼吸暂停(CSA)占 22%。HFrEF、HFmrEF 和 HFpEF 组的 SDB 患病率分别为 86%、86%和 62%(P=0.001)。3 组中 OSA 的患病率分别为 42%、47%和 49%(P=0.708),而 CSA 的患病率分别为 44%、40%和 13%(P<0.001)。Logistic 回归分析显示,年龄和 BMI 是 HF 患者 OSA 的独立危险因素,而 LVEF 和吸烟是 HF 患者 CSA 的独立危险因素。相关性分析显示,LVEF 与呼吸暂停低通气指数(AHI)(r=-0.309,P<0.001)和中枢性呼吸暂停指数(CAI)(r=-0.558,P<0.001)呈负相关,而与阻塞性呼吸暂停指数(OAI)无显著相关性。ROC 曲线显示,LVEF 可预测 CSA 和 SDB 的发生,AUC=0.683(95%CI 0.600-0.767,P<0.001)和 AUC=0.630(95%CI 0.559-0.702,P=0.001),但不能预测 OSA。

结论

SDB 在 HF 中很常见,不同 LVEF 的 HF 患者中 SDB 的患病率不同,主要与心功能的差异有关。HFrEF 和 HFmrEF 中 SDB 的患病率和严重程度明显高于 HFpEF,主要与 CSA 增加有关。当 HFmrEF 在心功能方面与 HFrEF 相似时,两组之间 SDB 的患病率、类型和严重程度相似。LVEF 的变化对 CAI 有显著影响,但对 OAI 没有影响。LVEF 可以在一定程度上预测 CSA 和 SDB 的发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验