Eder Theresa, Kraus Daniel, Höger Sigurd, Vogelsang Jan, Lupton John M
Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany.
Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
ACS Nano. 2022 Apr 26;16(4):6382-6393. doi: 10.1021/acsnano.2c00472. Epub 2022 Apr 8.
A single polymer chain can be thought of as a covalently bound J-aggregate, where the microscopic transition-dipole moments line up to emit in phase. Packing polymer chains into a bulk film can result in the opposite effect, inducing H-type coupling between chains. Cofacial transition-dipole moments oscillate out of phase, canceling each other out, so that the lowest-energy excited state turns dark. H-aggregates of conjugated polymers can, in principle, be coaxed into emitting light by mixing purely electronic and vibronic transitions. However, it is challenging to characterize this electron-phonon coupling experimentally. In a bulk film, many different conformations exist with varying degrees of intrachain J-type and interchain H-type coupling strengths, giving rise to broad and featureless aggregate absorption and emission spectra. Even if single nanoparticles consisting of only a few single chains are grown in a controlled fashion, the luminescence spectra remain broad, owing to the underlying molecular dynamics and structural heterogeneity at room temperature. At cryogenic temperatures, emission from H-type aggregates should be suppressed because, in the absence of thermal energy, internal conversion drives the aggregate to the lowest-energy dark state. At the same time, electronic and vibronic transitions narrow substantially, facilitating the attribution of spectral signatures to distinct vibrational modes. We demonstrate how to distinguish signatures of interchain H-type aggregate species from those of intramolecular J-type coupling. Whereas all dominant vibronic modes revealed in the photoluminescence (PL) and surface-enhanced resonance Raman scattering spectra of a single chromophore within a single polymer chain are identified in the J-type aggregate luminescence spectra, they are not all present at once in the H-type spectra. Universal spectral features are found for the luminescence from strongly HJ-coupled chains, clearly resolving the vibrations responsible for the nonadiabatic excited-state molecular dynamics that enable light emission. We discuss the possible combinations of vibrational modes responsible for H-type aggregate PL and demonstrate that only one, mainly the lowest energy one, of the three dominant vibrational modes contributes to the 0-1 transition, whereas combinations of all three are found in the 0-2 transition. From this analysis, we can distinguish between energy shifts due to either J-type intrachain coupling or H-type interchain interactions, offering a means to directly discriminate between structural and energetic disorder.
单个聚合物链可被视为共价键合的J聚集体,其中微观跃迁偶极矩排列整齐以同相发射。将聚合物链堆积成块状薄膜可能会产生相反的效果,诱导链间的H型耦合。共面跃迁偶极矩异相振荡,相互抵消,使得最低能量激发态变为暗态。原则上,共轭聚合物的H聚集体可以通过混合纯电子跃迁和振动跃迁来激发发光。然而,通过实验表征这种电子-声子耦合具有挑战性。在块状薄膜中,存在许多具有不同程度链内J型和链间H型耦合强度的不同构象,导致聚集吸收和发射光谱宽泛且无特征。即使仅由少数单链组成的单个纳米颗粒以可控方式生长,由于室温下潜在的分子动力学和结构异质性,发光光谱仍然很宽。在低温下,H型聚集体的发射应该会受到抑制,因为在没有热能的情况下,内转换会将聚集体驱动到最低能量的暗态。同时,电子跃迁和振动跃迁会大幅变窄,便于将光谱特征归因于不同的振动模式。我们展示了如何区分链间H型聚集体物种的特征与分子内J型耦合的特征。虽然在单个聚合物链内单个发色团的光致发光(PL)和表面增强共振拉曼散射光谱中揭示的所有主要振动模式都在J型聚集体发光光谱中得到识别,但它们并非同时出现在H型光谱中。对于强HJ耦合链的发光,发现了通用的光谱特征,清楚地分辨出了负责非绝热激发态分子动力学从而实现发光的振动。我们讨论了负责H型聚集体PL的振动模式的可能组合,并证明在0-1跃迁中,三个主要振动模式中只有一个,主要是最低能量的那个,对跃迁有贡献,而在0-2跃迁中则发现了所有三个模式的组合。通过这种分析,我们可以区分由于J型链内耦合或H型链间相互作用引起的能量位移,提供了一种直接区分结构无序和能量无序的方法。