Ghosh Raja, Paesani Francesco
Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA.
Chem Sci. 2022 Nov 16;14(5):1040-1064. doi: 10.1039/d2sc03793a. eCollection 2023 Feb 1.
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
诸如共轭聚合物、共价有机框架(COF)、金属有机框架(MOF)和层状钙钛矿等光活性有机及有机-无机杂化材料,在与光相互作用时会展现出有趣的光物理特征。阐明广泛功能材料中的结构-光物理-性质关系并非易事,需要我们深入理解激子(电子-空穴对)、极化子(电荷)、双极化子、声子(振动)、层间堆积相互作用以及不同形式的结构和构象缺陷之间的复杂相互作用。与为成功加速材料发现而积极开展的电子结构建模和数据驱动科学并行的是,一个准确、计算成本低且基于物理原理的理论模型同样重要,该模型要始终与概念复杂的实验观测建立定量联系。在此背景下,本观点的第一部分重点介绍了一个统一的理论框架,在该框架中,对于具有类似结构的荷斯坦型电子-振动哈密顿量的广泛准粒子,可以有效地描述电子耦合以及电子与核自由度之间的局部耦合。本观点的第二部分讨论了聚合物、COF、MOF和钙钛矿中的激子和极化子光物理特征,并尝试使用一个共同的理论结构——多粒子荷斯坦形式主义来弥合不同研究领域之间的差距。我们设想,将最先进的计算方法与多粒子荷斯坦形式主义协同整合,将有助于识别和建立新的变革性设计策略,这些策略将指导为广泛的光电子、自旋电子和光子应用而优化的下一代能量材料的合成与表征。