Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany.
Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Redox Biol. 2022 Jun;52:102309. doi: 10.1016/j.redox.2022.102309. Epub 2022 Apr 2.
Skeletal muscle stem cells (MuSCs), also called satellite cells, are instrumental for postnatal muscle growth and skeletal muscle regeneration. Numerous signaling cascades regulate the fate of MuSCs during muscle regeneration but the molecular mechanism by which MuSCs sense mechanical stimuli remain unclear. Here, we describe that Piezo1, a mechanosensitive ion channel, keeps MuSCs in a quiescent state and prevents senescence. Absence of Piezo1 induces precocious activation of MuSCs, attenuates proliferation, and impairs differentiation, essentially abolishing efficient skeletal muscle regeneration and replenishment of the MuSC pool. Furthermore, we discovered that inactivation of Piezo1 results in compensatory up-regulation of T-type voltage-gated Ca2+ channels, leading to increased Ca influx, which strongly induces NOX4 expression via cPKC. Elevated NOX4 expression in Piezo1-deficient MuSCs increases ROS levels and DNA damage, causing P53-dependent cellular senescence and cell death. The importance of the P53/P21-axis for mediating Piezo1-dependent cellular defects was confirmed by pharmacological inhibition of P53 in Piezo1-deficient mice, which abrogates increased senescence of muscle cells and normalizes muscle regeneration. Our findings uncover an essential role of Piezo1-mediated mechano-signaling in MuSCs for maintaining quiescence and preventing senescence. Reduced mechano-signaling due to decreased physical activity during aging may contribute to the increase of senescent cells and the decline of MuSC numbers in geriatric mice and humans.
骨骼肌干细胞(MuSCs),也称为卫星细胞,对于出生后肌肉生长和骨骼肌再生至关重要。许多信号级联反应调节 MuSCs 在肌肉再生过程中的命运,但 MuSCs 感知机械刺激的分子机制尚不清楚。在这里,我们描述了 Piezo1,一种机械敏感的离子通道,使 MuSCs 保持静止状态并防止衰老。Piezo1 的缺失会导致 MuSCs 过早激活,增殖减弱,分化受损,基本上会破坏有效的骨骼肌再生和 MuSC 池的补充。此外,我们发现 Piezo1 的失活会导致 T 型电压门控 Ca2+通道的代偿性上调,导致 Ca 内流增加,通过 cPKC 强烈诱导 NOX4 表达。Piezo1 缺陷型 MuSCs 中升高的 NOX4 表达会增加 ROS 水平和 DNA 损伤,导致 P53 依赖性细胞衰老和细胞死亡。通过药理学抑制 Piezo1 缺陷型小鼠中的 P53,证实了 P53/P21 轴对于介导 Piezo1 依赖性细胞缺陷的重要性,该抑制作用消除了肌肉细胞中衰老的增加并使肌肉再生正常化。我们的研究结果揭示了 Piezo1 介导的机械信号在 MuSCs 中维持静止和防止衰老中的重要作用。由于衰老期间体力活动减少导致的机械信号减少,可能导致衰老细胞增加和老年小鼠和人类中 MuSC 数量减少。
Life Sci Alliance. 2023-2
J Cachexia Sarcopenia Muscle. 2021-2
Int J Mol Sci. 2020-3-6
J Cachexia Sarcopenia Muscle. 2024-10
Biochem Biophys Res Commun. 2022-6-4
Biochem Biophys Res Commun. 2023-8-20
Front Cell Dev Biol. 2025-8-14
Front Med. 2025-5-2