Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia.
School of Biological Sciences, Victoria University, Wellington, 6012, New Zealand.
BMC Plant Biol. 2022 Apr 9;22(1):184. doi: 10.1186/s12870-022-03512-0.
Elements are the basis of life on Earth, whereby organisms are essentially evolved chemical substances that dynamically interact with each other and their environment. Determining species elemental quotas (their elementome) is a key indicator for their success across environments with different resource availabilities. Elementomes remain undescribed for functionally diverse dinoflagellates within the family Symbiodiniaceae that includes coral endosymbionts. We used dry combustion and ICP-MS to assess whether Symbiodiniaceae (ten isolates spanning five genera Breviolum, Cladocopium, Durusdinium, Effrenium, Symbiodinium) maintained under long-term nutrient replete conditions have unique elementomes (six key macronutrients and nine micronutrients) that would reflect evolutionarily conserved preferential elemental acquisition. For three isolates we assessed how elevated temperature impacted their elementomes. Further, we tested whether Symbiodiniaceae conform to common stoichiometric hypotheses (e.g., the growth rate hypothesis) documented in other marine algae. This study considers whether Symbiodiniaceae isolates possess unique elementomes reflective of their natural ecologies, evolutionary histories, and resistance to environmental change.
Symbiodiniaceae isolates maintained under long-term luxury uptake conditions, all exhibited highly divergent elementomes from one another, driven primarily by differential content of micronutrients. All N:P and C:P ratios were below the Redfield ratio values, whereas C:N was close to the Redfield value. Elevated temperature resulted in a more homogenised elementome across isolates. The Family-level elementome was (CN PSKCa) · 1000 (FeMnSrZnNiSeCuMoV) mmol Phosphorous versus (CNPSKCa) · 1000 (FeMnSrZnNiSeCuMoV) mmol Phosphorous at 27.4 ± 0.4 °C and 30.7 ± 0.01 °C, respectively. Symbiodiniaceae isolates tested here conformed to some, but not all, stoichiometric principles.
Elementomes for Symbiodiniaceae diverge from those reported for other marine algae, primarily via lower C:N:P and different micronutrient expressions. Long-term maintenance of Symbiodiniaceae isolates in culture under common nutrient replete conditions suggests isolates have evolutionary conserved preferential uptake for certain elements that allows these unique elementomes to be identified. Micronutrient content (normalised to phosphorous) commonly increased in the Symbiodiniaceae isolates in response to elevated temperature, potentially indicating a common elemental signature to warming.
元素是地球上生命的基础,生物体本质上是动态相互作用的化学物质,与它们的环境相互作用。确定物种的元素配额(元素组)是它们在资源可用性不同的环境中成功的关键指标。对于功能多样的甲藻门 Symbiodiniaceae 家族中的共生藻,元素组仍然没有被描述,其中包括珊瑚共生藻。我们使用干法燃烧和 ICP-MS 来评估长期在充足营养条件下培养的 Symbiodiniaceae(十个分离株跨越五个属 Breviolum、Cladocopium、Durusdinium、Effrenium、Symbiodinium)是否具有独特的元素组(六种关键的大量营养素和九种微量元素),这些元素组将反映进化保守的优先元素获取。对于三个分离株,我们评估了高温如何影响它们的元素组。此外,我们测试了 Symbiodiniaceae 是否符合其他海洋藻类中记录的常见化学计量学假设(例如,生长率假设)。本研究考虑了 Symbiodiniaceae 分离株是否具有独特的元素组,反映了它们的自然生态、进化历史和对环境变化的抵抗力。
长期在奢侈吸收条件下培养的 Symbiodiniaceae 分离株彼此之间表现出高度不同的元素组,主要由微量元素的含量差异驱动。所有的 N:P 和 C:P 比值都低于 Redfield 比值,而 C:N 接近 Redfield 值。高温导致分离株之间的元素组更加均匀。在 27.4 ± 0.4°C 和 30.7 ± 0.01°C 下,家族水平的元素组为 (CN PSKCa)·1000(FeMnSrZnNiSeCuMoV)mmol 磷与 (CNPSKCa)·1000(FeMnSrZnNiSeCuMoV)mmol 磷,分别。这里测试的 Symbiodiniaceae 分离株符合一些但不是所有的化学计量学原理。
Symbiodiniaceae 的元素组与其他海洋藻类报告的元素组不同,主要是通过较低的 C:N:P 和不同的微量元素表达。长期在常见营养充足条件下培养 Symbiodiniaceae 分离株表明,分离株对某些元素具有进化保守的优先吸收能力,这使得这些独特的元素组能够被识别。在应对高温时,Symbiodiniaceae 分离株中的微量元素含量(以磷为基准)通常会增加,这可能表明存在一种常见的元素特征来应对变暖。