Suppr超能文献

基于图的机器学习与钠加成物的形成有助于非靶向 LC/ESI/HRMS 中的结构解析。

Sodium adduct formation with graph-based machine learning can aid structural elucidation in non-targeted LC/ESI/HRMS.

机构信息

Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 106 91, Stockholm, Sweden; Department of Food and Drug, University of Parma, via Università, 12, I 43121, Parma, Italy.

Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia.

出版信息

Anal Chim Acta. 2022 Apr 29;1204:339402. doi: 10.1016/j.aca.2021.339402. Epub 2021 Dec 27.

Abstract

Non-targeted screening with LC/ESI/HRMS aims to identify the structure of the detected compounds using their retention time, exact mass, and fragmentation pattern. Challenges remain in differentiating between isomeric compounds. One untapped possibility to facilitate identification of isomers relies on different ionic species formed in electrospray. In positive ESI mode, both protonated molecules and adducts can be formed; however, not all isomeric structures form the same ionic species. The complicated mechanism of adduct formation has hindered the use of this molecular characteristic in the structural elucidation in non-targeted screening. Here, we have studied the adduct formation for 94 small molecules with ion mobility spectra and compared collision cross-sections of the respective ions. Based on the results we developed a fast support vector machine classifier with polynomial kernels for accurately predicting the sodium adduct formation in ESI/HRMS. The model is trained on five independent data sets from different laboratories and uses the graph-based connectivity of functional groups and PubChem fingerprints to predict the sodium adduct formation in ESI/HRMS. The validation of the model showed an accuracy of 74.7% (balanced accuracy 70.0%) on a dataset from an independent laboratory, which was not used in the training of the model. Lastly, we applied the classification algorithm to the SusDat database by NORMAN network to evaluate the proportion of isomeric compounds that could be distinguished based on predicted sodium adduct formation. It was observed that sodium adduct formation probability can provide additional selectivity for about one quarter of the exact masses and, therefore, shows practical utility for structural assignment in non-targeted screening.

摘要

利用 LC/ESI/HRMS 进行非靶向筛选旨在通过保留时间、精确质量和碎片模式来识别检测到的化合物的结构。区分同分异构体仍然存在挑战。一种尚未开发的可能性是利用电喷雾中形成的不同离子种类来促进异构体的识别。在正电喷雾模式下,可以形成质子化分子和加合物;然而,并非所有的同分异构体结构都形成相同的离子种类。加合物形成的复杂机制阻碍了该分子特征在非靶向筛选结构解析中的应用。在这里,我们使用离子淌度谱研究了 94 个小分子的加合物形成,并比较了各自离子的碰撞截面。基于这些结果,我们开发了一种快速支持向量机分类器,带有多项式核,用于准确预测 ESI/HRMS 中的钠加合物形成。该模型基于来自不同实验室的五个独立数据集进行训练,使用基于图的官能团连接性和 PubChem 指纹图谱来预测 ESI/HRMS 中的钠加合物形成。该模型在来自独立实验室的数据集上的验证表明,准确度为 74.7%(平衡准确度为 70.0%),该数据集未用于模型的训练。最后,我们通过 NORMAN 网络将分类算法应用于 SusDat 数据库,以评估可以基于预测的钠加合物形成来区分的同分异构体化合物的比例。结果表明,钠加合物形成的概率可以为大约四分之一的精确质量提供额外的选择性,因此在非靶向筛选的结构分配中具有实际应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验