Suppr超能文献

通过短期分子动力学的统计比较来识别疫苗逃逸位点。

Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics.

作者信息

Rajendran Madhusudan, Ferran Maureen C, Babbitt Gregory A

机构信息

Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York.

出版信息

Biophys Rep (N Y). 2022 Jun 8;2(2):100056. doi: 10.1016/j.bpr.2022.100056. Epub 2022 Apr 4.

Abstract

The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutralizing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational method to monitor hotspots of functional evolution in antibody binding footprints.

摘要

识别能够逃避抗体作用的病毒突变对于理解免疫与病毒进化之间的相互作用至关重要。我们描述了一种基于分子动力学(MD)的方法,该方法超越了接触图谱分析,能够很好地扩展到配备现代图形处理器的台式计算机上,并且能让用户识别病毒抗原中易于发生疫苗逃逸的功能性蛋白位点。我们首先实施MD流程,通过对短期MD生产运行的重复集进行原子波动的Kullback-Leibler散度的位点计算,从而能够对流感血凝素(HA)在存在和不存在三种著名中和抗体的情况下的快速运动进行统计比较。使用这种应用于病毒蛋白运动的简单比较方法,我们成功地在计算机模拟中识别出了所有先前通过选择实验和中和试验预先确定的流感HA中经实验证实的逃逸位点。在验证了我们的计算方法后,我们接着在存在COVOX-222和S2H97抗体的情况下,对SARS-CoV-2病毒受体结合域中的潜在热点残基进行了研究。我们在抗原-抗体界面中识别出许多同样易于发生潜在抗体逃逸的单个位点,这些位点与许多在SARS-CoV-2关注变体中出现的已知突变位点相匹配。在奥密克戎变体中,我们发现两种抗体的功能结合谱中只有最小程度的适应性进化变化。总之,我们提供了一种廉价且准确的计算方法来监测抗体结合足迹中功能进化的热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c466/9680791/544faa2e14b2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验