Suppr超能文献

用于神经组织工程的明胶/聚偏二氟乙烯纳米纤维的冷等离体改性和电导率感应。

Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering.

机构信息

Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.

Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

Artif Organs. 2022 Aug;46(8):1504-1521. doi: 10.1111/aor.14258. Epub 2022 Apr 24.

Abstract

BACKGROUND

This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds.

METHODS

Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable parameters. Finally, the biocompatibility of the scaffolds was analyzed and approved by in vitro tests using two different PC12 and C6 cell lines. In the present study the morphology, FTIR, dynamic light scattering, mechanical properties, wettability, contact angle tests, differential scanning calorimetric, rate of degradation, conductivity, biocompatibility, gene expression, DAPI staining, and cell proliferation were investigated.

RESULTS

The PAG percentage optimization results revealed fiber diameter reduction, conductivity enhancement, young's modulus improvement, hydrophilicity devaluation, water uptake decrement, and degradability reduction in electrospun nanofibers by increasing the PAG concentration. Furthermore, ATR-FTIR, FE-SEM, AFM, and contact angle tests revealed that helium CAP treatment improves scaffold characterizations for 90 s in duration time. Furthermore, the results of the MTT assay, FE-SEM, DAPI staining, and RT-PCR revealed that samples containing 2.5% w/w of PAG are the most biocompatible, and CAP treatment increases cell proliferation and improves neural gene expression in the differentiation medium.

CONCLUSIONS

According to the results, the samples with the 2.5% w/w of PAG could provide a suitable matrix for neural tissue engineering in terms of physicochemical and biological.

摘要

背景

本研究通过神经组织工程的一些研究,包括新型自刺激导电生物相容性和可降解纳米复合支架的制造、表面处理和评估。

方法

将明胶作为生物基材料和聚偏二氟乙烯(PVDF)作为机械、电气和压电改进剂进行共电纺丝。此外,合成聚苯胺/石墨烯(PAG)纳米粒子并以不同百分比添加到明胶溶液中以诱导导电性。在获得最佳 PAG 百分比后,通过不同的等离子体变量参数对最佳样品进行冷等离体体处理。最后,通过使用两种不同的 PC12 和 C6 细胞系进行体外试验来分析和批准支架的生物相容性。在本研究中,研究了形态、FTIR、动态光散射、力学性能、润湿性、接触角试验、差示扫描量热法、降解速率、电导率、生物相容性、基因表达、DAPI 染色和细胞增殖。

结果

通过增加 PAG 浓度,PAG 百分比优化结果表明电纺纳米纤维的纤维直径减小、导电性增强、杨氏模量提高、亲水性降低、吸水率降低和降解性降低。此外,ATR-FTIR、FE-SEM、AFM 和接触角试验表明,氦气 CAP 处理可改善持续 90 秒的支架特性。此外,MTT 测定、FE-SEM、DAPI 染色和 RT-PCR 的结果表明,含有 2.5%w/w PAG 的样品具有最佳的生物相容性,并且 CAP 处理可增加分化培养基中的细胞增殖并改善神经基因表达。

结论

根据结果,含有 2.5%w/w PAG 的样品可以在物理化学和生物学方面为神经组织工程提供合适的基质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验