Suppr超能文献

结核分枝杆菌 VapBC 毒素-抗毒素系统作为 tRNA 失活的治疗靶点。

tRNA Inactivating Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems as Therapeutic Targets.

机构信息

Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.

Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA.

出版信息

Antimicrob Agents Chemother. 2022 May 17;66(5):e0189621. doi: 10.1128/aac.01896-21. Epub 2022 Apr 11.

Abstract

The Mycobacterium tuberculosis genome contains an abundance of toxin-antitoxin (TA) systems, 50 of which belong to the VapBC family. The activity of VapC toxins is controlled by dynamic association with their cognate antitoxins-the toxin is inactive when complexed with VapB antitoxin but active when freed. Here, we determined the cellular target of two phylogenetically related VapC toxins and demonstrate how their properties can be harnessed for drug development. First, we used a specialized RNA sequencing (RNA-seq) approach, 5' RNA-seq, to accurately identify the RNA target of M. tuberculosis VapC2 and VapC21 toxins. Both toxins exclusively disable initiator tRNA through cleavage at a single, identical site within their anticodon loop. Consistent with the essential role and global requirement for initiator tRNA in bacteria, expression of each VapC toxin resulted in potent translation inhibition followed by growth arrest and cell death. Guided by previous structural studies, we then mutated two conserved amino acids in the antitoxin (WR→AA) that resided in the toxin-antitoxin interface and were predicted to inhibit toxin activity. Both mutants were markedly less efficient in rescuing growth over time, suggesting that screens for high-affinity small-molecule inhibitors against this or other crucial VapB-VapC interaction sites could drive constitutive inactivation of tRNA by these VapC toxins. Collectively, the properties of the VapBC2 and VapBC21 TA systems provide a framework for development of bactericidal antitubercular agents with high specificity for M. tuberculosis cells.

摘要

结核分枝杆菌基因组中含有丰富的毒素-抗毒素(TA)系统,其中 50 种属于 VapBC 家族。VapC 毒素的活性受其同源抗毒素动态结合的控制——当与 VapB 抗毒素形成复合物时,毒素处于无活性状态,但当被释放时则具有活性。在这里,我们确定了两个系统发育上相关的 VapC 毒素的细胞靶标,并展示了如何利用它们的特性开发药物。首先,我们使用专门的 RNA 测序(RNA-seq)方法,即 5' RNA-seq,准确地鉴定了结核分枝杆菌 VapC2 和 VapC21 毒素的 RNA 靶标。这两种毒素都只通过在其反密码环内的单一相同位置切割来使起始 tRNA 失活。与起始 tRNA 在细菌中的必需作用和全局需求一致,表达每种 VapC 毒素都会导致强烈的翻译抑制,随后是生长停滞和细胞死亡。根据先前的结构研究,我们然后突变了位于毒素-抗毒素界面中的两个保守氨基酸(WR→AA),这些氨基酸被预测会抑制毒素的活性。两个突变体在随着时间推移拯救生长方面的效率明显降低,这表明针对该或其他关键 VapB-VapC 相互作用位点的高亲和力小分子抑制剂的筛选可能会导致这些 VapC 毒素对 tRNA 的持续失活。总之,VapBC2 和 VapBC21 TA 系统的特性为开发针对结核分枝杆菌细胞的杀菌性抗结核药物提供了一个框架,该药物具有针对结核分枝杆菌细胞的高度特异性。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验