Carroll Kathleen A, Farwell Laura S, Pidgeon Anna M, Razenkova Elena, Gudex-Cross David, Helmers David P, Lewińska Katarzyna E, Elsen Paul R, Radeloff Volker C
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Ecol Appl. 2022 Sep;32(6):e2624. doi: 10.1002/eap.2624. Epub 2022 Jun 13.
Human activities alter ecosystems everywhere, causing rapid biodiversity loss and biotic homogenization. These losses necessitate coordinated conservation actions guided by biodiversity and species distribution spatial data that cover large areas yet have fine-enough resolution to be management-relevant (i.e., ≤5 km). However, most biodiversity products are too coarse for management or are only available for small areas. Furthermore, many maps generated for biodiversity assessment and conservation do not explicitly quantify the inherent tradeoff between resolution and accuracy when predicting biodiversity patterns. Our goals were to generate predictive models of overall breeding bird species richness and species richness of different guilds based on nine functional or life-history-based traits across the conterminous United States at three resolutions (0.5, 2.5, and 5 km) and quantify the tradeoff between resolution and accuracy and, hence, relevance for management of the resulting biodiversity maps. We summarized 18 years of North American Breeding Bird Survey data (1992-2019) and modeled species richness using random forests, including 66 predictor variables (describing climate, vegetation, geomorphology, and anthropogenic conditions), 20 of which we newly derived. Among the three spatial resolutions, the percentage variance explained ranged from 27% to 60% (median = 54%; mean = 57%) for overall species richness and 12% to 87% (median = 61%; mean = 58%) for our different guilds. Overall species richness and guild-specific species richness were best explained at 5-km resolution using ~24 predictor variables based on percentage variance explained, symmetric mean absolute percentage error, and root mean square error values. However, our 2.5-km-resolution maps were almost as accurate and provided more spatially detailed information, which is why we recommend them for most management applications. Our results represent the first consistent, occurrence-based, and nationwide maps of breeding bird richness with a thorough accuracy assessment that are also spatially detailed enough to inform local management decisions. More broadly, our findings highlight the importance of explicitly considering tradeoffs between resolution and accuracy to create management-relevant biodiversity products for large areas.
人类活动改变了世界各地的生态系统,导致生物多样性迅速丧失和生物同质化。这些损失需要以生物多样性和物种分布空间数据为指导进行协调的保护行动,这些数据要覆盖大面积区域,同时具有足够精细的分辨率以与管理相关(即≤5公里)。然而,大多数生物多样性产品对于管理来说过于粗糙,或者仅适用于小面积区域。此外,许多为生物多样性评估和保护生成的地图在预测生物多样性模式时并未明确量化分辨率和准确性之间的内在权衡。我们的目标是基于美国本土三种分辨率(0.5公里、2.5公里和5公里)下的九个基于功能或生活史的特征,生成总体繁殖鸟类物种丰富度和不同类群物种丰富度的预测模型,并量化分辨率和准确性之间的权衡,从而确定由此生成的生物多样性地图与管理的相关性。我们总结了18年的北美繁殖鸟类调查数据(1992 - 2019年),并使用随机森林对物种丰富度进行建模,其中包括66个预测变量(描述气候、植被、地貌和人为条件),其中20个是我们新推导出来的。在这三种空间分辨率中,总体物种丰富度的方差解释百分比范围为27%至60%(中位数 = 54%;平均值 = 57%),不同类群的方差解释百分比范围为12%至87%(中位数 = 61%;平均值 = 58%)。根据方差解释百分比、对称平均绝对百分比误差和均方根误差值,使用约24个预测变量时,总体物种丰富度和特定类群物种丰富度在5公里分辨率下得到了最佳解释。然而,我们2.5公里分辨率的地图几乎同样准确,并且提供了更多空间细节信息,这就是为什么我们推荐将其用于大多数管理应用的原因。我们的结果代表了首批一致的、基于出现情况的、全国范围的繁殖鸟类丰富度地图,并进行了全面的准确性评估,其空间细节程度足以指导地方管理决策。更广泛地说,我们的研究结果强调了在创建适用于大面积区域的与管理相关的生物多样性产品时,明确考虑分辨率和准确性之间权衡的重要性。