Agassant Jean-François, Demay Yves
MINES Paris, PSL Research University, CEMEF, UMR CNRS 7635, Sophia-Antipolis, 06560 Valbonne, France.
Laboratory J.A. Dieudonné, UMR CNRS 7351, University Côte d'Azur, Parc Valrose, 06000 Nice, France.
Polymers (Basel). 2022 Mar 24;14(7):1309. doi: 10.3390/polym14071309.
A review of the different coextrusion processes and the related processing problems is presented. A one-dimensional bilayer coextrusion Poiseuille flow model is first developed with Newtonian and shear-thinning rheological behaviors. A transitory computation at the convergence between the two independent polymer layers shows that stationary interface position and velocity profile are established after a short distance of the order of the die gap which justifies the validity of the 1D stationary model. This model is then applied to multilayer temperature dependent coextrusion flows which correspond to realistic industrial coextrusion conditions. Marked interface instabilities may be observed depending on the rheology of the coextruded polymers and of their flow rate ratios. Experiments point clearly out that these instabilities may be amplified along the die land. Convective stability analysis as well as direct numerical computation discriminate flow situations which amplify or damp down instabilities. These 1D models are unable to account for the complex feedblock coat-hanger die geometries. A thin layer coextrusion model is then developed, based on the Hele-Shaw lubrication approximations already used for single layer extrusion problems. It allows to predict the location of the interfaces between the different layers in the whole die, and especially at die exit. This represents a major issue in feedblock die coextrusion. These thin layer approaches are unable to address the encapsulation of one polymer by the other in these complex die geometries with important gap thicknesses. Experiments conducted in dies of square section allow identifying the dynamics of encapsulation. 3D models are required to account for this phenomenon but the management of the sticking contact at the die wall poses difficult numerical problems.
本文综述了不同的共挤出工艺以及相关的加工问题。首先建立了一个一维双层共挤出泊肃叶流动模型,该模型考虑了牛顿流体和剪切变稀流变行为。对两个独立聚合物层之间的收敛过程进行的瞬态计算表明,在模头间隙量级的短距离之后,会建立起稳定的界面位置和速度分布,这证明了一维稳态模型的有效性。然后将该模型应用于多层温度依赖的共挤出流动,这与实际工业共挤出条件相对应。根据共挤出聚合物的流变学及其流速比,可能会观察到明显的界面不稳定性。实验清楚地指出,这些不稳定性可能会在模头工作部分沿程放大。对流稳定性分析以及直接数值计算区分了放大或抑制不稳定性的流动情况。这些一维模型无法考虑复杂的进料块衣架式模头几何形状。接着基于已经用于单层挤出问题的赫勒-肖润滑近似,开发了一个薄层共挤出模型。它能够预测整个模头中不同层之间界面的位置,特别是在模头出口处。这是进料块模头共挤出中的一个主要问题。这些薄层方法无法解决在具有重要间隙厚度的这些复杂模头几何形状中一种聚合物被另一种聚合物包裹的问题。在方形截面模头中进行的实验有助于确定包裹的动力学过程。需要三维模型来解释这种现象,但模壁处粘着接触的处理带来了困难的数值问题。