文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

四颗种植体支持的覆盖义齿与骨组织相互作用的分析模型

Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue.

作者信息

Pelekhan Bohdan, Dutkiewicz Maciej, Shatskyi Ivan, Velychkovych Andrii, Rozhko Mykola, Pelekhan Liubomyr

机构信息

Department of Dentistry of Postgraduate Study Faculty, Ivano-Frankivsk National Medical University, Halytska Str. 2, 76018 Ivano-Frankivsk, Ukraine.

Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland.

出版信息

Materials (Basel). 2022 Mar 24;15(7):2398. doi: 10.3390/ma15072398.


DOI:10.3390/ma15072398
PMID:35407730
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8999531/
Abstract

Today, an interdisciplinary approach to solving the problems of implantology is key to the effective use of intraosseous dental implantations. The functional properties of restoration structures for the dentition depend significantly on the mechanical stresses that occur in the structural elements and bone tissues in response to mastication loads. An orthopedic design with a bar fixation system connected to implants may be considered to restore an edentulous mandible using an overdenture. In this study, the problem of the mechanics of a complete overdenture based on a bar and four implants was formulated. A mathematical model of the interaction between the orthopedic structure and jawbone was developed, and a methodology was established for the analytical study of the stress state of the implants and adjacent bone tissue under the action of a chewing load. The novelty of the proposed model is that it operates with the minimum possible set of input data and provides adequate estimates of the most significant output parameters that are necessary for practical application. The obtained analytical results are illustrated by two examples of calculating the equivalent stresses in implants and the peri-implant tissue for real overdenture designs. To carry out the final assessment of the strength of the implants and bone, the prosthesis was loaded with mastication loads of different localization. In particular, the possibilities of loading the prosthesis in the area of the sixth and seventh teeth were investigated. Recommendations on the configuration of the distal cantilever of the overdenture and the acceptable level and distribution of the mastication load are presented. It was determined that, from a mechanical point of view, the considered orthopedic systems are capable of providing long-term success if they are used in accordance with established restrictions and recommendations.

摘要

如今,采用跨学科方法解决种植学问题是有效应用骨内牙种植术的关键。牙列修复结构的功能特性在很大程度上取决于结构元件和骨组织在咀嚼负荷作用下产生的机械应力。一种带有连接种植体的杆固定系统的矫形设计可被视为使用覆盖义齿修复无牙下颌骨。在本研究中,提出了基于杆和四个种植体的全口覆盖义齿力学问题。建立了矫形结构与颌骨相互作用的数学模型,并确立了一种方法,用于分析研究咀嚼负荷作用下种植体和相邻骨组织的应力状态。所提出模型的新颖之处在于它以尽可能少的输入数据集进行运算,并能对实际应用所需的最重要输出参数提供充分估计。通过两个实际覆盖义齿设计中计算种植体和种植体周围组织等效应力的例子,对所获得的分析结果进行了说明。为了对种植体和骨的强度进行最终评估,对义齿施加了不同定位的咀嚼负荷。特别是,研究了在第六和第七颗牙区域加载义齿的可能性。给出了关于覆盖义齿远端悬臂的构型以及咀嚼负荷的可接受水平和分布的建议。结果表明,从力学角度来看,如果按照既定的限制和建议使用,所考虑的矫形系统能够实现长期成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/46049b30ebcd/materials-15-02398-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/56b2442993fd/materials-15-02398-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/f58eaceda31c/materials-15-02398-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/094bb18980f1/materials-15-02398-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/e9a7bcfb389c/materials-15-02398-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/5dfff7683b6a/materials-15-02398-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/e551e2079b77/materials-15-02398-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/29d7bb18f7f6/materials-15-02398-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/831651e1e2df/materials-15-02398-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/874e68756540/materials-15-02398-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/5c81efcb343c/materials-15-02398-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/6bf945b2b429/materials-15-02398-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/631ef04bbaf8/materials-15-02398-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/b6c1be5dcdd3/materials-15-02398-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/de5d365d463a/materials-15-02398-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/49f632e53581/materials-15-02398-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/46049b30ebcd/materials-15-02398-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/56b2442993fd/materials-15-02398-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/f58eaceda31c/materials-15-02398-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/094bb18980f1/materials-15-02398-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/e9a7bcfb389c/materials-15-02398-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/5dfff7683b6a/materials-15-02398-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/e551e2079b77/materials-15-02398-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/29d7bb18f7f6/materials-15-02398-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/831651e1e2df/materials-15-02398-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/874e68756540/materials-15-02398-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/5c81efcb343c/materials-15-02398-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/6bf945b2b429/materials-15-02398-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/631ef04bbaf8/materials-15-02398-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/b6c1be5dcdd3/materials-15-02398-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/de5d365d463a/materials-15-02398-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/49f632e53581/materials-15-02398-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/8999531/46049b30ebcd/materials-15-02398-g016.jpg

相似文献

[1]
Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue.

Materials (Basel). 2022-3-24

[2]
Stress transfer of four mandibular implant overdenture cantilever designs.

J Prosthet Dent. 2004-10

[3]
Implant-retained mandibular overdentures with immediate loading: a 3- to 8-year prospective study on 328 implants.

Clin Implant Dent Relat Res. 2003

[4]
FEM Investigation of the Stress Distribution over Mandibular Bone Due to Screwed Overdenture Positioned on Dental Implants.

Materials (Basel). 2018-8-23

[5]
[Analysis of the effect of mesial implant position on surrounding bone stress of mandibular edentulous jaw under dynamic loads].

Zhonghua Kou Qiang Yi Xue Za Zhi. 2017-11-9

[6]
[Three-dimensional finite element analysis of four-implants supported mandibular overdentures using two different attachments].

Zhonghua Kou Qiang Yi Xue Za Zhi. 2019-1-9

[7]
Implant-supported overdentures with different clinical configurations: Mechanical resistance using a numerical approach.

J Prosthet Dent. 2019-1-31

[8]
A 3D finite element analysis of glass fiber reinforcement designs on the stress of an implant-supported overdenture.

J Prosthet Dent. 2019-4-20

[9]
Immediate functional loading of dental implants supporting a bar-retained maxillary overdenture: preliminary 12-month results.

J Periodontol. 2009-11

[10]
Photoelastic stress analysis of various retention mechanisms on 3-implant-retained mandibular overdentures.

J Prosthet Dent. 2007-4

引用本文的文献

[1]
Effect of bar designs on peri implant tissues health in implant-supported removable prostheses: a systematic review.

BMC Oral Health. 2024-1-28

本文引用的文献

[1]
Revealing the compressive and flow properties of novel bone scaffold structure manufactured by selective laser sintering technique.

Proc Inst Mech Eng H. 2022-1-11

[2]
Evaluation of complacency about dental implants with shared decision making and satisfaction scores: A cross-sectional study.

Saudi Dent J. 2021-12

[3]
Three-Dimensional Finite Element Investigation into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone.

Materials (Basel). 2021-11-18

[4]
Mathematical Modelling of Destabilization Stress Factors of Stable-Elastic Fixation of Distal Trans- and Suprasyndesmotic Fibular Fractures.

J Healthc Eng. 2021

[5]
Dental cone beam CT: An updated review.

Phys Med. 2021-8

[6]
Rehabilitation of extremely atrophic edentulous mandible in elderly patients with associated comorbidities: a case report and proof of concept.

Head Face Med. 2021-6-29

[7]
Mechanical analysis of prosthetic bars and dental implants in 3 and 4 implant-supported overdenture protocols using finite element analysis.

J Oral Biol Craniofac Res. 2021

[8]
Validation of an Intra-Oral Scan Method Versus Cone Beam Computed Tomography Superimposition to Assess the Accuracy between Planned and Achieved Dental Implants: A Randomized In Vitro Study.

Int J Environ Res Public Health. 2020-12-14

[9]
The Influence of Surgical Experience and Bone Density on the Accuracy of Static Computer-Assisted Implant Surgery in Edentulous Jaws Using a Mucosa-Supported Surgical Template with a Half-Guided Implant Placement Protocol-A Randomized Clinical Study.

Materials (Basel). 2020-12-17

[10]
Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study.

J Prosthet Dent. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索