Alemayehu Dawit-Bogale, Jeng Yeau-Ren
Department of Biomedical Engineering, National Cheng Kung University (NCKU), Tainan 70101, Taiwan.
School of Smart Semiconductor and Sustainable Manufacturing, National Cheng Kung University (NCKU), Tainan 70101, Taiwan.
Materials (Basel). 2021 Nov 18;14(22):6974. doi: 10.3390/ma14226974.
Variations in the implant thread shape and occlusal load behavior may result in significant changes in the biological and mechanical properties of dental implants and surrounding bone tissue. Most previous studies consider a single implant thread design, an isotropic bone structure, and a static occlusal load. However, the effects of different thread designs, bone material properties, and loading conditions are important concerns in clinical practice. Accordingly, the present study performs Finite Element Analysis (FEA) simulations to investigate the static, quasi-static and dynamic response of the implant and implanted bone material under various thread designs and occlusal loading directions (buccal-lingual, mesiodistal and apical). The simulations focus specifically on the von Mises stress, displacement, shear stress, compressive stress, and tensile stress within the implant and the surrounding bone. The results show that the thread design and occlusal loading rate have a significant effect on the stress distribution and deformation of the implant and bone structure during clinical applications. Overall, the results provide a useful insight into the design of enhanced dental implants for an improved load transfer efficiency and success rate.
种植体螺纹形状和咬合负载行为的变化可能会导致牙科种植体及周围骨组织的生物学和力学性能发生显著变化。大多数先前的研究考虑的是单一的种植体螺纹设计、各向同性的骨结构和静态咬合负载。然而,不同的螺纹设计、骨材料特性和负载条件的影响在临床实践中是重要的关注点。因此,本研究进行有限元分析(FEA)模拟,以研究在各种螺纹设计和咬合负载方向(颊舌向、近远中向和根尖向)下种植体和植入骨材料的静态、准静态和动态响应。模拟具体关注种植体及周围骨内的冯·米塞斯应力、位移、剪应力、压应力和拉应力。结果表明,螺纹设计和咬合负载率对临床应用过程中种植体和骨结构的应力分布及变形有显著影响。总体而言,研究结果为设计增强型牙科种植体以提高负载传递效率和成功率提供了有益的见解。