Suppr超能文献

信道质量分类模型硬件架构的权衡分析

Trade-Off Analysis of Hardware Architectures for Channel-Quality Classification Models.

作者信息

Torres-Alvarado Alan, Morales-Rosales Luis Alberto, Algredo-Badillo Ignacio, López-Huerta Francisco, Lobato-Baez Mariana, López-Pimentel Juan Carlos

机构信息

Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico.

Facultad de Ingeniería Civil, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico.

出版信息

Sensors (Basel). 2022 Mar 24;22(7):2497. doi: 10.3390/s22072497.

Abstract

The latest generation of communication networks, such as SDVN (Software-defined vehicular network) and VANETs (Vehicular ad-hoc networks), should evaluate their communication channels to adapt their behavior. The quality of the communication in data networks depends on the behavior of the transmission channel selected to send the information. Transmission channels can be affected by diverse problems ranging from physical phenomena (e.g., weather, cosmic rays) to interference or faults inherent to data spectra. In particular, if the channel has a good transmission quality, we might maximize the bandwidth use. Otherwise, although fault-tolerant schemes degrade the transmission speed by solving errors or failures should be included, these schemes spend more energy and are slower due to requesting lost packets (recovery). In this sense, one of the open problems in communications is how to design and implement an efficient and low-power-consumption mechanism capable of sensing the quality of the channel and automatically making the adjustments to select the channel over which transmit. In this work, we present a trade-off analysis based on hardware implementation to identify if a channel has a low or high quality, implementing four machine learning algorithms: Decision Trees, Multi-Layer Perceptron, Logistic Regression, and Support Vector Machines. We obtained the best trade-off with an accuracy of 95.01% and efficiency of 9.83 Mbps/LUT (LookUp Table) with a hardware implementation of a Decision Tree algorithm with a depth of five.

摘要

最新一代的通信网络,如软件定义车载网络(SDVN)和车载自组织网络(VANETs),应评估其通信信道以调整自身行为。数据网络中的通信质量取决于所选用于发送信息的传输信道的性能。传输信道可能会受到各种问题的影响,从物理现象(如天气、宇宙射线)到数据频谱固有的干扰或故障。特别是,如果信道具有良好的传输质量,我们可以最大化带宽使用。否则,尽管应包含通过解决错误或故障来降低传输速度的容错方案,但这些方案会消耗更多能量,并且由于请求丢失的数据包(恢复)而速度较慢。从这个意义上讲,通信领域的一个开放性问题是如何设计和实现一种高效且低功耗的机制,该机制能够感知信道质量并自动进行调整以选择传输所使用的信道。在这项工作中,我们基于硬件实现进行了权衡分析,以识别信道质量的高低,实现了四种机器学习算法:决策树、多层感知器、逻辑回归和支持向量机。我们通过深度为五的决策树算法的硬件实现,以95.01%的准确率和9.83 Mbps/LUT(查找表)的效率获得了最佳权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee25/9003435/af3cb4bd8e03/sensors-22-02497-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验