Suppr超能文献

通过随机森林分类器进行无线传感器网络故障检测。

Fault Detection in Wireless Sensor Networks through the Random Forest Classifier.

机构信息

Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan.

College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.

出版信息

Sensors (Basel). 2019 Apr 1;19(7):1568. doi: 10.3390/s19071568.

Abstract

Wireless Sensor Networks (WSNs) are vulnerable to faults because of their deployment in unpredictable and hazardous environments. This makes WSN prone to failures such as software, hardware, and communication failures. Due to the sensor's limited resources and diverse deployment fields, fault detection in WSNs has become a daunting task. To solve this problem, Support Vector Machine (SVM), Convolutional Neural Network (CNN), Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), Random Forest (RF), and Probabilistic Neural Network (PNN) classifiers are used for classification of gain, offset, spike, data loss, out of bounds, and stuck-at faults at the sensor level. Out of six faults, two of them are induced in the datasets, i.e., spike and data loss faults. The results are compared on the basis of their Detection Accuracy (DA), True Positive Rate (TPR), Matthews Correlation Coefficients (MCC), and F1-score. In this paper, a comparative analysis is performed among the classifiers mentioned previously on real-world datasets. Simulations show that the RF algorithm secures a better fault detection rate than the rest of the classifiers.

摘要

无线传感器网络(WSN)由于部署在不可预测和危险的环境中,因此容易出现故障。这使得 WSN 容易出现软件、硬件和通信故障等故障。由于传感器资源有限且部署领域多样,WSN 中的故障检测已成为一项艰巨的任务。为了解决这个问题,支持向量机(SVM)、卷积神经网络(CNN)、随机梯度下降(SGD)、多层感知机(MLP)、随机森林(RF)和概率神经网络(PNN)分类器用于对传感器级别的增益、偏移、尖峰、数据丢失、超出范围和固定故障进行分类。在这六种故障中,有两种是在数据集上诱导的,即尖峰和数据丢失故障。基于检测精度(DA)、真阳性率(TPR)、马修斯相关系数(MCC)和 F1 分数对结果进行了比较。在本文中,对前面提到的分类器在真实数据集上进行了比较分析。仿真表明,RF 算法比其他分类器具有更好的故障检测率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65df/6480196/16ccb8b923e7/sensors-19-01568-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验