Suppr超能文献

摆动电弧窄间隙焊接坡口宽度的红外视觉传感检测。

Infrared Visual Sensing Detection of Groove Width for Swing Arc Narrow Gap Welding.

机构信息

Jiangsu Provincial Key Laboratory of Advanced Welding Technology, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

出版信息

Sensors (Basel). 2022 Mar 26;22(7):2555. doi: 10.3390/s22072555.

Abstract

To solve the current problem of poor weld formation due to groove width variation in swing arc narrow gap welding, an infrared passive visual sensing detection approach was developed in this work to measure groove width under intense welding interferences. This approach, called global pattern recognition, includes self-adaptive positioning of the ROI window, equal division thresholding and in situ dynamic clustering algorithms. Accordingly, the self-adaptive positioning method filters several of the nearest values of the arc's highest point of the vertical coordinate and groove's same-side edge position to determine the origin coordinates of the ROI window; the equal division thresholding algorithm then divides and processes the ROI window image to extract the groove edge and forms a raw data distribution of groove width in the data window. The in situ dynamic clustering algorithm dynamically classifies the preprocessed data in situ and finally detects the value of the groove width from the remaining true data. Experimental results show that the equal division thresholding algorithm can effectively reduce the influences of arc light and welding fume on the extraction of the groove edge. The in situ dynamic clustering algorithm can avoid disturbances from simulated welding spatters with diameters less than 2.19 mm, thus realizing the high-precision detection of the actual groove width and demonstrating stronger environmental adaptability of the proposed global pattern recognition approach.

摘要

为了解决摆动电弧窄间隙焊接中因坡口宽度变化导致焊缝成形不良的问题,本工作开发了一种红外被动视觉传感检测方法,以在强烈的焊接干扰下测量坡口宽度。该方法称为全局模式识别,包括 ROI 窗口的自适应定位、等分阈值和原位动态聚类算法。相应地,自适应定位方法过滤电弧最高点和坡口同侧边缘位置的几个最近值,以确定 ROI 窗口的原点坐标;等分阈值算法然后对 ROI 窗口图像进行分割和处理,以提取坡口边缘,并在数据窗口中形成坡口宽度的原始数据分布。原位动态聚类算法对预处理数据进行原位动态分类,最后从剩余的真实数据中检测出坡口宽度的值。实验结果表明,等分阈值算法可以有效减少电弧光和焊接烟尘对坡口边缘提取的影响。原位动态聚类算法可以避免直径小于 2.19mm 的模拟飞溅物的干扰,从而实现实际坡口宽度的高精度检测,并展示了所提出的全局模式识别方法更强的环境适应性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验