School of Electrical Engineering, University of Belgrade, Bul. Kralja Aleksandara 73, 11120 Belgrade, Serbia.
Vlatacom Institute of High Technologies, Milutina Milankovica 5, 11070 Belgrade, Serbia.
Sensors (Basel). 2022 Mar 27;22(7):2562. doi: 10.3390/s22072562.
SWIR imaging bears considerable advantages over visible-light (color) and thermal images in certain challenging propagation conditions. Thus, the SWIR imaging channel is frequently used in multi-spectral imaging systems (MSIS) for long-range surveillance in combination with color and thermal imaging to improve the probability of correct operation in various day, night and climate conditions. Integration of deep-learning (DL)-based real-time object detection in MSIS enables an increase in efficient utilization for complex long-range surveillance solutions such as border or critical assets control. Unfortunately, a lack of datasets for DL-based object detection models training for the SWIR channel limits their performance. To overcome this, by using the MSIS setting we propose a new cross-spectral automatic data annotation methodology for SWIR channel training dataset creation, in which the visible-light channel provides a source for detecting object types and bounding boxes which are then transformed to the SWIR channel. A mathematical image transformation that overcomes differences between the SWIR and color channel and their image distortion effects for various magnifications are explained in detail. With the proposed cross-spectral methodology, the goal of the paper is to improve object detection in SWIR images captured in challenging outdoor scenes. Experimental tests for two object types (cars and persons) using a state-of-the-art YOLOX model demonstrate that retraining with the proposed automatic cross-spectrally created SWIR image dataset significantly improves average detection precision. We achieved excellent improvements in detection performance in various variants of the YOLOX model (nano, tiny and x).
SWIR 成像在某些具有挑战性的传播条件下比可见光(彩色)和热像具有更大的优势。因此,SWIR 成像通道在多光谱成像系统(MSIS)中经常与彩色和热成像结合使用,以提高在各种白天、夜间和气候条件下正确运行的概率。在 MSIS 中集成基于深度学习(DL)的实时目标检测可以提高复杂远程监控解决方案(如边界或关键资产控制)的有效利用率。不幸的是,用于 SWIR 通道的基于 DL 的目标检测模型训练缺乏数据集,限制了它们的性能。为了克服这一问题,我们使用 MSIS 设置提出了一种新的跨光谱自动数据注释方法,用于创建 SWIR 通道训练数据集,其中可见光通道提供了检测目标类型和边界框的来源,然后将其转换到 SWIR 通道。详细解释了一种克服 SWIR 和彩色通道之间差异以及它们对各种放大倍数的图像失真效果的数学图像变换。通过提出的跨光谱方法,本文的目标是提高在具有挑战性的户外场景中捕获的 SWIR 图像中的目标检测。使用最先进的 YOLOX 模型对两种目标类型(汽车和人员)进行的实验测试表明,使用所提出的自动跨光谱创建的 SWIR 图像数据集进行重新训练可以显著提高平均检测精度。我们在 YOLOX 模型的各种变体(纳米、微小和 x)中实现了出色的检测性能改进。