Suppr超能文献

基于概率传感器网络的动态多模态意图感知。

Towards Dynamic Multi-Modal Intent Sensing Using Probabilistic Sensor Networks.

机构信息

Natural Interaction Lab, Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.

出版信息

Sensors (Basel). 2022 Mar 29;22(7):2603. doi: 10.3390/s22072603.

Abstract

Intent sensing-the ability to sense what a user wants to happen-has many potential technological applications. Assistive medical devices, such as prosthetic limbs, could benefit from intent-based control systems, allowing for faster and more intuitive control. The accuracy of intent sensing could be improved by using multiple sensors sensing multiple environments. As users will typically pass through different sensing environments throughout the day, the system should be dynamic, with sensors dropping in and out as required. An intent-sensing algorithm that allows for this cannot rely on training from only a particular combination of sensors. It should allow any (dynamic) combination of sensors to be used. Therefore, the objective of this study is to develop and test a dynamic intent-sensing system under changing conditions. A method has been proposed that treats each sensor individually and combines them using Bayesian sensor fusion. This approach was tested on laboratory data obtained from subjects wearing Inertial Measurement Units and surface electromyography electrodes. The proposed algorithm was then used to classify functional reach activities and compare the performance to an established classifier (k-nearest-neighbours) in cases of simulated sensor dropouts. Results showed that the Bayesian sensor fusion algorithm was less affected as more sensors dropped out, supporting this intent-sensing approach as viable in dynamic real-world scenarios.

摘要

意图感知——即感知用户想要发生什么的能力——具有许多潜在的技术应用。辅助医疗设备,如假肢,可以受益于基于意图的控制系统,从而实现更快、更直观的控制。通过使用多个传感器感知多个环境,可以提高意图感知的准确性。由于用户通常在一天中会经过不同的感应环境,因此系统应该是动态的,根据需要有传感器的加入和退出。允许这种情况发生的意图感知算法不能仅依赖于特定传感器组合的训练。它应该允许使用任何(动态)组合的传感器。因此,本研究的目的是在变化的条件下开发和测试动态意图感知系统。提出了一种方法,该方法单独处理每个传感器,并使用贝叶斯传感器融合将它们组合在一起。该方法在佩戴惯性测量单元和表面肌电图电极的受试者获得的实验室数据上进行了测试。然后,将所提出的算法用于对功能可达性活动进行分类,并在模拟传感器故障的情况下将性能与已建立的分类器(k-最近邻)进行比较。结果表明,随着更多传感器的退出,贝叶斯传感器融合算法受到的影响较小,这支持了这种在动态现实场景中可行的意图感知方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55fc/9003336/cca06f693633/sensors-22-02603-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验