Suppr超能文献

基于机器学习方法的创新时间序列分析的循环加载下具有预定剪切面稳定性预测的斜率

Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach.

作者信息

Wu Tingyao, Yu Hongan, Jiang Nan, Zhou Chuanbo, Luo Xuedong

机构信息

Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China.

CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, China.

出版信息

Sensors (Basel). 2022 Mar 30;22(7):2647. doi: 10.3390/s22072647.

Abstract

We propose a mechanical learning method that can be used to predict stability coefficients for slopes where slopes with predetermined shear planes are subjected to cyclic seismic loads under undrained conditions. Firstly, shear tests with cyclic loading of different parameters were simulated on designated slip zone soil specimens, in which the strain softening process leading to landslide occurrence was closely observed. At the same time, based on the limit equilibrium analysis of the Sarma method, the variation of slope stability coefficients under different cyclic loads was investigated. Finally, a Box-Jenkins' modeling approach is used to predict the data from the time series of slope stability coefficients using a mechanical learning approach. The simulation results show that (1) reduction in coordination number can be an accurate indicator of the level of strain softening and evolutionary processes; (2) the gradual reduction of shear stress facilitates the soil strain softening process, while different cyclic loading stress amplitudes will result in rapid penetration or non-penetration of the fracture zone by means of particulate flow. Although the confining pressure of the slip zone soil can inhibit the increase of fractures, it has a limited inhibitory effect on strain softening; (3) based on field observations of the slope stability factor and stress field, two possible landslide triggering mechanisms are described. (4) Mechanical learning of time series can accurately predict the changing pattern of stability coefficients of slopes without loading. This study establishes a potential bridge between the geological investigation of landslides and the theoretical background of landslide stability coefficient prediction.

摘要

我们提出了一种机器学习方法,该方法可用于预测在不排水条件下具有预定剪切面的边坡在循环地震荷载作用下的稳定系数。首先,在指定的滑动带土样上模拟了不同参数循环加载的剪切试验,密切观察了导致滑坡发生的应变软化过程。同时,基于萨尔玛方法的极限平衡分析,研究了不同循环荷载作用下边坡稳定系数的变化。最后,采用Box-Jenkins建模方法,运用机器学习方法对边坡稳定系数时间序列的数据进行预测。模拟结果表明:(1)配位数的降低可以准确指示应变软化程度和演化过程;(2)剪应力的逐渐降低促进了土体应变软化过程,而不同的循环加载应力幅值会导致颗粒流对破裂带的快速穿透或不穿透。虽然滑动带土的围压可以抑制裂缝的增加,但对应变软化的抑制作用有限;(3)基于对边坡稳定系数和应力场的现场观测,描述了两种可能的滑坡触发机制。(4)时间序列的机器学习可以准确预测无荷载作用下边坡稳定系数的变化模式。本研究在滑坡地质调查与滑坡稳定系数预测理论背景之间建立了一座潜在的桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1e4/9003511/bdc5e97dd3a5/sensors-22-02647-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验