Suppr超能文献

人细胞色素 P450 的分子积木:血红素结构域的灵活性对于嵌合蛋白活性的关键作用。

Molecular Lego of Human Cytochrome P450: The Key Role of Heme Domain Flexibility for the Activity of the Chimeric Proteins.

机构信息

Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy.

出版信息

Int J Mol Sci. 2022 Mar 25;23(7):3618. doi: 10.3390/ijms23073618.

Abstract

The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as ‘molecular Lego’. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the ‘molecular Lego’ approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.

摘要

细胞色素 P450 超家族是血红素硫醇酶,能够进行单加氧酶反应。几项研究已经证明,使用来自巨大芽孢杆菌的可溶性细菌还原酶 BMR 作为人工电子转移伙伴与人类 P450 结构域融合在单个多肽链中是可行的,这种方法称为“分子乐高”。3A4-BMR 嵌合体已经通过许多不同的生物物理技术进行了深入的生化特性分析,包括其活性、偶联效率和灵活性,这些研究得出的结论是,在连接两个结构域的环中延伸五个甘氨酸可以改善所有催化参数,因为该系统的灵活性得到了提高。在这项工作中,我们使用差示扫描量热法扩展 3A4-BMR 嵌合体的表征,以评估 BMR 的稳定作用。我们还将“分子乐高”方法应用于 CYP19A1(芳香酶),数据显示,对于所有测试的构建体,嵌合体的活性都非常低(<0.003 min-1),具有不同的连接环长度:ARO-BMR、ARO-BMR-3GLY 和 ARO-BMR-5GLY。然而,与 BMR 的融合对热稳定性有显著影响,这可以通过 Tonset 增加 10°C 和存在由 BMR 蛋白质结构域驱动的协同展开过程来表示。以前表征的 3A4-BMR 构建体在热稳定性方面表现出与 ARO-BMR 构建体相同的行为,但作为环长度的函数,其活性更高。将 ARO-BMR 系统与 3A4-BMR 进行比较表明,每个 P450-BMR 嵌合体的设计不仅应在电子转移方面进行仔细评估,还应在生物物理限制方面进行评估,这些限制并不总是可以通过嵌合来克服。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf69/8998974/1320410bbb57/ijms-23-03618-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验