In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany.
Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany.
Int J Mol Sci. 2022 Mar 29;23(7):3734. doi: 10.3390/ijms23073734.
Human peripheral neuropathies are poorly understood, and the availability of experimental models limits further research. The PeriTox test uses immature dorsal root ganglia (DRG)-like neurons, derived from induced pluripotent stem cells (iPSC), to assess cell death and neurite damage. Here, we explored the suitability of matured peripheral neuron cultures for the detection of sub-cytotoxic endpoints, such as altered responses of pain-related P2X receptors. A two-step differentiation protocol, involving the transient expression of ectopic neurogenin-1 (NGN1) allowed for the generation of homogeneous cultures of sensory neurons. After >38 days of differentiation, they showed a robust response (Ca2+-signaling) to the P2X3 ligand α,β-methylene ATP. The clinical proteasome inhibitor bortezomib abolished the P2X3 signal at ≥5 nM, while 50−200 nM was required in the PeriTox test to identify neurite damage and cell death. A 24 h treatment with low nM concentrations of bortezomib led to moderate increases in resting cell intracellular Ca2+ concentration but signaling through transient receptor potential V1 (TRPV1) receptors or depolarization-triggered Ca2+ influx remained unaffected. We interpreted the specific attenuation of purinergic signaling as a functional cell stress response. A reorganization of tubulin to form dense structures around the cell somata confirmed a mild, non-cytotoxic stress triggered by low concentrations of bortezomib. The proteasome inhibitors carfilzomib, delanzomib, epoxomicin, and MG-132 showed similar stress responses. Thus, the model presented here may be used for the profiling of new proteasome inhibitors in regard to their side effect (neuropathy) potential, or for pharmacological studies on the attenuation of their neurotoxicity. P2X3 signaling proved useful as endpoint to assess potential neurotoxicants in peripheral neurons.
人类周围神经病变的机制尚不清楚,实验模型的可用性限制了进一步的研究。PeriTox 测试使用源自诱导多能干细胞(iPSC)的未成熟背根神经节(DRG)样神经元来评估细胞死亡和轴突损伤。在这里,我们探讨了成熟的周围神经元培养物是否适合检测亚细胞毒性终点,例如改变与疼痛相关的 P2X 受体的反应。两步分化方案,涉及异位神经生成素-1(NGN1)的瞬时表达,允许产生同质的感觉神经元培养物。分化 >38 天后,它们对 P2X3 配体 α,β-亚甲基 ATP 表现出强烈的反应(Ca2+信号转导)。临床蛋白酶体抑制剂硼替佐米(bortezomib)在≥5 nM 时可消除 P2X3 信号,而 PeriTox 测试中需要 50-200 nM 才能识别轴突损伤和细胞死亡。24 小时用低 nM 浓度的硼替佐米处理会导致静息细胞内 Ca2+浓度适度增加,但瞬时受体电位 V1(TRPV1)受体或去极化触发的 Ca2+内流的信号转导不受影响。我们将嘌呤能信号的特异性衰减解释为一种功能性细胞应激反应。微管蛋白的重组成密集结构围绕细胞体,证实了由低浓度硼替佐米触发的轻度非细胞毒性应激。蛋白酶体抑制剂卡非佐米(carfilzomib)、丹那唑辛(delanzomib)、环氧酶素(epoxomicin)和 MG-132 也表现出类似的应激反应。因此,这里提出的模型可用于研究新型蛋白酶体抑制剂在其潜在副作用(神经病变)方面的特征,或用于研究减轻其神经毒性的药理学研究。P2X3 信号转导被证明是评估周围神经元中潜在神经毒性剂的有用终点。