Suppr超能文献

基于元路径和节点属性的邻居拓扑集成用于预测药物相关疾病

Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases.

机构信息

School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.

School of Mathematical Science, Heilongjiang University, Harbin 150080, China.

出版信息

Int J Mol Sci. 2022 Mar 31;23(7):3870. doi: 10.3390/ijms23073870.

Abstract

Identifying new disease indications for existing drugs can help facilitate drug development and reduce development cost. The previous drug-disease association prediction methods focused on data about drugs and diseases from multiple sources. However, they did not deeply integrate the neighbor topological information of drug and disease nodes from various meta-path perspectives. We propose a prediction method called NAPred to encode and integrate meta-path-level neighbor topologies, multiple kinds of drug attributes, and drug-related and disease-related similarities and associations. The multiple kinds of similarities between drugs reflect the degrees of similarity between two drugs from different perspectives. Therefore, we constructed three drug-disease heterogeneous networks according to these drug similarities, respectively. A learning framework based on fully connected neural networks and a convolutional neural network with an attention mechanism is proposed to learn information of the neighbor nodes of a pair of drug and disease nodes. The multiple neighbor sets composed of different kinds of nodes were formed respectively based on meta-paths with different semantics and different scales. We established the attention mechanisms at the neighbor-scale level and at the neighbor topology level to learn enhanced neighbor feature representations and enhanced neighbor topological representations. A convolutional-autoencoder-based module is proposed to encode the attributes of the drug-disease pair in three heterogeneous networks. Extensive experimental results indicated that NAPred outperformed several state-of-the-art methods for drug-disease association prediction, and the improved recall rates demonstrated that NAPred was able to retrieve more actual drug-disease associations from the top-ranked candidates. Case studies on five drugs further demonstrated the ability of NAPred to identify potential drug-related disease candidates.

摘要

确定现有药物的新疾病适应症有助于促进药物开发并降低开发成本。先前的药物-疾病关联预测方法侧重于来自多个来源的药物和疾病数据。然而,它们没有从多种元路径角度深入整合药物和疾病节点的邻居拓扑信息。我们提出了一种名为 NAPred 的预测方法,用于编码和整合元路径级别的邻居拓扑结构、多种药物属性以及药物相关和疾病相关的相似性和关联。多种药物之间的相似性反映了两种药物从不同角度的相似程度。因此,我们根据这些药物相似性分别构建了三个药物-疾病异质网络。提出了一个基于全连接神经网络和具有注意力机制的卷积神经网络的学习框架,用于学习一对药物和疾病节点的邻居节点的信息。根据具有不同语义和不同尺度的元路径分别形成了由不同种类节点组成的多个邻居集。我们在邻居尺度级别和邻居拓扑级别建立了注意力机制,以学习增强的邻居特征表示和增强的邻居拓扑表示。提出了一个基于卷积自动编码器的模块,用于对三个异质网络中的药物-疾病对的属性进行编码。广泛的实验结果表明,NAPred 在药物-疾病关联预测方面优于几种最先进的方法,并且提高的召回率表明 NAPred 能够从排名靠前的候选药物中检索更多实际的药物-疾病关联。对五种药物的案例研究进一步证明了 NAPred 识别潜在药物相关疾病候选者的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a16/8999005/53e082aff9e1/ijms-23-03870-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验