State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
Nat Commun. 2022 Apr 11;13(1):1930. doi: 10.1038/s41467-022-29621-w.
Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can be done within the framework of dissipative quantum dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the computational cost. Here we suggest AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD on seven-sites Fenna-Matthews-Olson (FMO) complex.
探索光捕获复合物(LHCs)中的激发能量转移(EET)对于理解自然过程和设计高效光伏器件至关重要。 LHCs 是开放系统,其中量子效应对几乎完美利用太阳能可能起着至关重要的作用。在包含量子效应的情况下模拟能量转移可以在耗散量子动力学(QD)的框架内完成,这在计算上是昂贵的。因此,人工智能(AI)为降低计算成本提供了一种工具。在这里,我们提出了一种使用 AI 的 AI-QD 方法,该方法可以直接预测 QD 作为时间和其他参数(如温度、重组能等)的函数,与传统的 QD 和替代的、递归的基于 AI 的 QD 方法相比,完全避免了递归逐步动力学传播的需要。我们的轨迹学习 AI-QD 方法能够预测 QD 在无限时间的正确渐近行为。我们在七个位点的 Fenna-Matthews-Olson(FMO)复合物上展示了 AI-QD。