Suppr超能文献

相似文献

2
Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC.
J Comput Chem. 2018 Mar 30;39(8):438-449. doi: 10.1002/jcc.25134. Epub 2017 Dec 15.
3
Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein.
J Phys Chem B. 2019 Nov 21;123(46):9762-9772. doi: 10.1021/acs.jpcb.9b07456. Epub 2019 Nov 12.
5
Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex.
J Phys Chem B. 2021 Nov 4;125(43):11884-11892. doi: 10.1021/acs.jpcb.1c06844. Epub 2021 Oct 20.
6
Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex.
J Phys Chem B. 2022 Nov 17;126(45):9271-9287. doi: 10.1021/acs.jpcb.2c06605. Epub 2022 Nov 3.
7
Theoretical Study on the Effect of Environment on Excitation Energy Transfer in Photosynthetic Light-Harvesting Systems.
J Phys Chem B. 2020 Mar 26;124(12):2354-2362. doi: 10.1021/acs.jpcb.0c00266. Epub 2020 Mar 16.
9
Complex quantum network model of energy transfer in photosynthetic complexes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061917. doi: 10.1103/PhysRevE.86.061917. Epub 2012 Dec 28.
10
Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022706. doi: 10.1103/PhysRevE.91.022706. Epub 2015 Feb 10.

引用本文的文献

1
MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows.
J Chem Theory Comput. 2024 Feb 13;20(3):1193-1213. doi: 10.1021/acs.jctc.3c01203. Epub 2024 Jan 25.

本文引用的文献

1
Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic Quantum Dynamics.
Acc Chem Res. 2021 Dec 7;54(23):4215-4228. doi: 10.1021/acs.accounts.1c00511. Epub 2021 Nov 10.
2
Artificial Neural Networks as Propagators in Quantum Dynamics.
J Phys Chem Lett. 2021 Nov 4;12(43):10654-10662. doi: 10.1021/acs.jpclett.1c03117. Epub 2021 Oct 27.
3
Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term Memory Recurrent Neural Network.
J Phys Chem Lett. 2021 Oct 21;12(41):10225-10234. doi: 10.1021/acs.jpclett.1c02672. Epub 2021 Oct 14.
4
Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems.
Chem Rev. 2021 Aug 25;121(16):9816-9872. doi: 10.1021/acs.chemrev.1c00107. Epub 2021 Jul 7.
5
Convolutional Neural Networks for Long Time Dissipative Quantum Dynamics.
J Phys Chem Lett. 2021 Mar 11;12(9):2476-2483. doi: 10.1021/acs.jpclett.1c00079. Epub 2021 Mar 5.
6
Automated Experimentation Powers Data Science in Chemistry.
Acc Chem Res. 2021 Feb 2;54(3):546-555. doi: 10.1021/acs.accounts.0c00736. Epub 2021 Jan 20.
8
Designing and understanding light-harvesting devices with machine learning.
Nat Commun. 2020 Sep 11;11(1):4587. doi: 10.1038/s41467-020-17995-8.
9
Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism.
J Chem Phys. 2020 May 29;152(20):204105. doi: 10.1063/1.5142164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验