Ai Bao-Quan, Zhu Shi-Liang
Laboratory of Quantum Information Technology and SPTE, South China Normal University, Guangzhou, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061917. doi: 10.1103/PhysRevE.86.061917. Epub 2012 Dec 28.
The quantum network model with real variables is usually used to describe the excitation energy transfer (EET) in the Fenna-Matthews-Olson (FMO) complexes. In this paper we add the quantum phase factors to the hopping terms and find that the quantum phase factors play an important role in the EET. The quantum phase factors allow us to consider the space structure of the pigments. It is found that phase coherence within the complexes would allow quantum interference to affect the dynamics of the EET. There exist some optimal phase regions where the transfer efficiency takes its maxima, which indicates that when the pigments are optimally spaced, the exciton can pass through the FMO with perfect efficiency. Moreover, the optimal phase regions almost do not change with the environments. In addition, we find that the phase factors are useful in the EET just in the case of multiple pathways. Therefore, we demonstrate that the quantum phases may bring the other two factors, the optimal space of the pigments and multiple pathways, together to contribute the EET in photosynthetic complexes with perfect efficiency.
具有实变量的量子网络模型通常用于描述费纳-马修斯-奥尔森(FMO)复合物中的激发能量转移(EET)。在本文中,我们将量子相位因子添加到跳跃项中,发现量子相位因子在EET中起着重要作用。量子相位因子使我们能够考虑色素的空间结构。研究发现,复合物中的相位相干会使量子干涉影响EET的动力学。存在一些最佳相位区域,其中转移效率达到最大值,这表明当色素以最佳间距排列时,激子可以完美地通过FMO。此外,最佳相位区域几乎不随环境变化。另外,我们发现相位因子仅在多路径情况下对EET有用。因此,我们证明量子相位可能将色素的最佳空间和多路径这另外两个因素结合起来,以完美的效率促进光合复合物中的EET。