Suppr超能文献

西班牙糖尿病视网膜病变临床决策支持系统的真实世界结局。

Real-world outcomes of a clinical decision support system for diabetic retinopathy in Spain.

机构信息

Ophtalmology, Universitat Rovira i Virgili, Tarragona, Spain.

Ophthalmology, Hospital Universitario Sant Joan de Reus, Reus, Spain.

出版信息

BMJ Open Ophthalmol. 2022 Mar 28;7(1):e000974. doi: 10.1136/bmjophth-2022-000974. eCollection 2022.

Abstract

OBJECTIVE

The aim of present study was to evaluate our clinical decision support system (CDSS) for predicting risk of diabetic retinopathy (DR). We selected randomly a real population of patients with type 2 diabetes (T2DM) who were attending our screening programme.

METHODS AND ANALYSIS

The sample size was 602 patients with T2DM randomly selected from those who attended the DR screening programme. The algorithm developed uses nine risk factors: current age, sex, body mass index (BMI), duration and treatment of diabetes mellitus (DM), arterial hypertension, Glicated hemoglobine (HbA1c), urine-albumin ratio and glomerular filtration.

RESULTS

The mean current age of 67.03±10.91, and 272 were male (53.2%), and DM duration was 10.12±6.4 years, 222 had DR (35.8%). The CDSS was employed for 1 year. The prediction algorithm that the CDSS uses included nine risk factors: current age, sex, BMI, DM duration and treatment, arterial hypertension, HbA1c, urine-albumin ratio and glomerular filtration. The area under the curve (AUC) for predicting the presence of any DR achieved a value of 0.9884, the sensitivity of 98.21%, specificity of 99.21%, positive predictive value of 98.65%, negative predictive value of 98.95%, α error of 0.0079 and β error of 0.0179.

CONCLUSION

Our CDSS for predicting DR was successful when applied to a real population.

摘要

目的

本研究旨在评估我们用于预测糖尿病视网膜病变(DR)风险的临床决策支持系统(CDSS)。我们随机选择了参加我们筛查计划的 2 型糖尿病(T2DM)患者的真实人群。

方法和分析

该样本量为 602 名随机从参加 DR 筛查计划的 T2DM 患者中选择的患者。开发的算法使用了 9 个危险因素:当前年龄、性别、体重指数(BMI)、糖尿病(DM)的持续时间和治疗、动脉高血压、糖化血红蛋白(HbA1c)、尿白蛋白比值和肾小球滤过率。

结果

67.03±10.91 岁的平均当前年龄,272 名男性(53.2%),DM 持续时间为 10.12±6.4 年,222 名患者患有 DR(35.8%)。CDSS 使用了 1 年。CDSS 使用的预测算法包括 9 个危险因素:当前年龄、性别、BMI、DM 持续时间和治疗、动脉高血压、HbA1c、尿白蛋白比值和肾小球滤过率。预测任何 DR 存在的曲线下面积(AUC)达到 0.9884,灵敏度为 98.21%,特异性为 99.21%,阳性预测值为 98.65%,阴性预测值为 98.95%,α 误差为 0.0079,β 误差为 0.0179。

结论

当应用于真实人群时,我们用于预测 DR 的 CDSS 是成功的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e132/8961111/1b8b9619dc22/bmjophth-2022-000974f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验