Gogoi Gautomi, Bhattacharya Labanya, Sahoo Smruti R, Sahu Sridhar, Sarma Neelotpal Sen, Sharma Sagar
Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon Guwahati-781035 Assam India +91-361-2270095.
Cotton University College Hostel Road, Pan Bazaar Guwahati-781001 Assam India.
RSC Adv. 2020 Dec 22;11(1):57-70. doi: 10.1039/d0ra08345c. eCollection 2020 Dec 21.
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.
在本研究中,已探索了氟代烷基侧链取代对通用受体部分萘四甲酸二亚胺(NDI)的空气稳定性、π堆积能力和电荷传输性质的影响。通过NDI部分的亚胺氮位置,对一系列具有不同侧链(烷基、氟代烷基)的24种化合物进行了密度泛函理论(DFT)研究。由于氟代烷基的吸电子性质,氟代烷基侧链工程化的NDI化合物比其烷基取代化合物具有更深的最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)。氟代烷基取代的NDI具有更高的电子亲和势(EA > 2.8 eV)和较低的LUMO能级(<-4.00 eV),这表明它们可能表现出更好且具有优异n型特性的空气稳定性。使用含时密度泛函理论(TD-DFT)计算得到的所有研究的NDI的光学吸收光谱(~386 nm)位于太阳光谱的紫外(UV)区域。此外,含氟代烷基侧链的NDI化合物的LOLIPOP(局部轨道定位器平面内积分π)指数值较低,表明其具有更好的π-π堆积能力。这也与从分子静电势能面(ESP)研究中获得的预测π-π堆积相互作用结果高度吻合。对于氟代烷基取代的化合物,π-π堆积被认为是共面相互作用,而对于烷基取代的化合物则是鱼骨状相互作用。计算结果揭示了为何用氟代烷基进行侧链工程能够有效地实现更好的空气稳定性、π-π堆积能力以及改善的电荷传输性质。